import pyrebase config = { "apiKey": "AIzaSyD3bXRjLxEAVOKtj8hpjO4iI3Nn32F7agU", "authDomain": "foodcloud-f6eb1.firebaseapp.com", "databaseURL": "https://foodcloud-f6eb1.firebaseio.com/", "storageBucket": "foodcloud-f6eb1.appspot.com" } firebase = pyrebase.initialize_app(config) auth = firebase.auth() user = auth.sign_in_with_email_and_password('yigitcolakohlu@gmail.com', 'FoodWro2018') db = firebase.database() data_format_prod = { 'Prod_Name': None, 'BBD': None, 'Nutrients': [], 'Calories': 0, 'Allergens': [], 'Problematic': False, 'Process': None, 'ED': None } data_format_proc = { 'Harvested': {'Date': '', 'Location': '', 'Product': ''}, 'Transport1': {'Duration': 0, 'Moved to,from': '-', 'Condition': True, 'Stopped': False}, 'Process': {'Location': '', 'Processes': ''}, 'Transport2': {'Duration': 0, 'Moved to,from': '-', 'Condition': 0, 'Stopped': False}, 'Packaging': {'Location': '', 'Material': '', 'Cancerogen': True} } data_1_prod = { 'Prod_Name': "Milk", 'BBD': "24.08.2018", 'Nutrients': ['Protein', 'Fat', 'Lactose', 'Glucose'], 'Calories': 120, 'Cooked': False, 'Allergens': ['Lactose'], 'Problematic': False, 'Process': 'Pastorized' } data_2_prod = { 'Prod_Name': "Chocolate", 'BBD': "28.01.2019", 'Nutrients': ['Lactose', 'Glucose', 'Cocoa'], 'Calories': 180, 'Cooked': False, 'Allergens': [""], 'Problematic': False, 'Process': '' } data_1_proc = { 'Harvested': { 'Date': '18.08.2018', 'Location': 'Larson Family', 'Product': 'Raw Milk' }, 'Transport1': { 'Duration': 9, 'Moved to,from': 'Larson Family-McCarty Family Farms', 'Condition': True, 'Stopped': True }, 'Process': { 'Location': 'McCarty Family Farms', 'Processes': 'Reverse Osmosis,Nanofiltration,Ultrafiltration,Microfiltration' }, 'Transport2': { 'Duration': 13, 'Moved to,from': 'McCarty Family Farms-JJX Packaging', 'Condition': True, 'Stopped': True }, 'Packaging': {'Location': 'JJX Packaging', 'Material': 'Carton', 'Cancerogen': False} } data_2_proc = { 'Harvested': { 'Date': '27.01.2018', 'Location': 'India', 'Product': 'Cocoa' }, 'Transport1': {'Duration': 71, 'Moved to,from': 'India-Nestle ', 'Condition': True, 'Stopped': True}, 'Process': {'Location': 'Nestle', 'Processes': 'Roasting,Pulp,Conching,Moulding'}, 'Transport2': { 'Duration': 4, 'Moved to,from': 'Nestle-Ulma Packaging', 'Condition': True, 'Stopped': False }, 'Packaging': {'Location': 'Ulma Packaging', 'Material': 'Foil', 'Cancerogen': False} } Products = [data_1_prod, data_2_prod] Processes = [data_1_proc, data_2_proc] for i in range(len(Products)): db.child("Products").child(str(i + 1)).set(Products[i]) for i in range(len(Processes)): db.child("Processes").child(str(i + 1)).set(Processes[i])