|
import pyrebase
|
|
|
|
config = {
|
|
"apiKey": "AIzaSyD3bXRjLxEAVOKtj8hpjO4iI3Nn32F7agU",
|
|
"authDomain": "foodcloud-f6eb1.firebaseapp.com",
|
|
"databaseURL": "https://foodcloud-f6eb1.firebaseio.com/",
|
|
"storageBucket": "foodcloud-f6eb1.appspot.com"
|
|
}
|
|
|
|
firebase = pyrebase.initialize_app(config)
|
|
|
|
auth = firebase.auth()
|
|
|
|
user = auth.sign_in_with_email_and_password('yigitcolakohlu@gmail.com', 'FoodWro2018')
|
|
|
|
db = firebase.database()
|
|
|
|
data_format_prod = {'Prod_Name': None, 'BBD': None, 'Nutrients': [], 'Calories': 0, 'Allergens': [],
|
|
'Problematic': False, 'Process': None, 'ED': None}
|
|
|
|
data_format_proc = {'Harvested': {'Date': '', 'Location': '', 'Product': ''},
|
|
'Transport1': {'Duration': 0, 'Moved to,from': '-', 'Condition': True, 'Stopped': False},
|
|
'Process': {'Location': '', 'Processes': ''},
|
|
'Transport2': {'Duration': 0, 'Moved to,from': '-', 'Condition': 0, 'Stopped': False},
|
|
'Packaging': {'Location': '', 'Material': '', 'Cancerogen': True}}
|
|
|
|
data_1_prod = {'Prod_Name': "Milk", 'BBD': "24.08.2018", 'Nutrients': ['Protein', 'Fat', 'Lactose', 'Glucose'],
|
|
'Calories': 120, 'Cooked': False, 'Allergens': ['Lactose'], 'Problematic': False,
|
|
'Process': 'Pastorized'}
|
|
|
|
data_2_prod = {'Prod_Name': "Chocolate", 'BBD': "28.01.2019", 'Nutrients': ['Lactose', 'Glucose', 'Cocoa'],
|
|
'Calories': 180, 'Cooked': False, 'Allergens': [""], 'Problematic': False, 'Process': ''}
|
|
|
|
data_1_proc = {'Harvested': {'Date': '18.08.2018', 'Location': 'Larson Family',
|
|
'Product': 'Raw Milk'},
|
|
'Transport1': {'Duration': 9, 'Moved to,from': 'Larson Family-McCarty Family Farms', 'Condition': True,
|
|
'Stopped': True}, 'Process': {'Location': 'McCarty Family Farms',
|
|
'Processes': 'Reverse Osmosis,Nanofiltration,Ultrafiltration,Microfiltration'},
|
|
'Transport2': {'Duration': 13, 'Moved to,from': 'McCarty Family Farms-JJX Packaging', 'Condition': True,
|
|
'Stopped': True},
|
|
'Packaging': {'Location': 'JJX Packaging', 'Material': 'Carton', 'Cancerogen': False}}
|
|
|
|
data_2_proc = {'Harvested': {'Date': '27.01.2018', 'Location': 'India',
|
|
'Product': 'Cocoa'},
|
|
'Transport1': {'Duration': 71, 'Moved to,from': 'India-Nestle ', 'Condition': True, 'Stopped': True},
|
|
'Process': {'Location': 'Nestle', 'Processes': 'Roasting,Pulp,Conching,Moulding'},
|
|
'Transport2': {'Duration': 4, 'Moved to,from': 'Nestle-Ulma Packaging', 'Condition': True,
|
|
'Stopped': False},
|
|
'Packaging': {'Location': 'Ulma Packaging', 'Material': 'Foil', 'Cancerogen': False}}
|
|
|
|
Products = [data_1_prod, data_2_prod]
|
|
Processes = [data_1_proc, data_2_proc]
|
|
|
|
for i in range(len(Products)):
|
|
db.child("Products").child(str(i + 1)).set(Products[i])
|
|
|
|
for i in range(len(Processes)):
|
|
db.child("Processes").child(str(i + 1)).set(Processes[i])
|