|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- r"""Evaluation executable for detection models.
-
- This executable is used to evaluate DetectionModels. There are two ways of
- configuring the eval job.
-
- 1) A single pipeline_pb2.TrainEvalPipelineConfig file maybe specified instead.
- In this mode, the --eval_training_data flag may be given to force the pipeline
- to evaluate on training data instead.
-
- Example usage:
- ./eval \
- --logtostderr \
- --checkpoint_dir=path/to/checkpoint_dir \
- --eval_dir=path/to/eval_dir \
- --pipeline_config_path=pipeline_config.pbtxt
-
- 2) Three configuration files may be provided: a model_pb2.DetectionModel
- configuration file to define what type of DetectionModel is being evaluated, an
- input_reader_pb2.InputReader file to specify what data the model is evaluating
- and an eval_pb2.EvalConfig file to configure evaluation parameters.
-
- Example usage:
- ./eval \
- --logtostderr \
- --checkpoint_dir=path/to/checkpoint_dir \
- --eval_dir=path/to/eval_dir \
- --eval_config_path=eval_config.pbtxt \
- --model_config_path=model_config.pbtxt \
- --input_config_path=eval_input_config.pbtxt
- """
- import functools
- import os
- import tensorflow as tf
-
- from object_detection.builders import dataset_builder
- from object_detection.builders import graph_rewriter_builder
- from object_detection.builders import model_builder
- from object_detection.legacy import evaluator
- from object_detection.utils import config_util
- from object_detection.utils import label_map_util
-
- tf.logging.set_verbosity(tf.logging.INFO)
-
- flags = tf.app.flags
- flags.DEFINE_boolean('eval_training_data', False,
- 'If training data should be evaluated for this job.')
- flags.DEFINE_string(
- 'checkpoint_dir', '',
- 'Directory containing checkpoints to evaluate, typically '
- 'set to `train_dir` used in the training job.')
- flags.DEFINE_string('eval_dir', '', 'Directory to write eval summaries to.')
- flags.DEFINE_string(
- 'pipeline_config_path', '',
- 'Path to a pipeline_pb2.TrainEvalPipelineConfig config '
- 'file. If provided, other configs are ignored')
- flags.DEFINE_string('eval_config_path', '',
- 'Path to an eval_pb2.EvalConfig config file.')
- flags.DEFINE_string('input_config_path', '',
- 'Path to an input_reader_pb2.InputReader config file.')
- flags.DEFINE_string('model_config_path', '',
- 'Path to a model_pb2.DetectionModel config file.')
- flags.DEFINE_boolean(
- 'run_once', False, 'Option to only run a single pass of '
- 'evaluation. Overrides the `max_evals` parameter in the '
- 'provided config.')
- FLAGS = flags.FLAGS
-
-
- @tf.contrib.framework.deprecated(None, 'Use object_detection/model_main.py.')
- def main(unused_argv):
- assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.'
- assert FLAGS.eval_dir, '`eval_dir` is missing.'
- tf.gfile.MakeDirs(FLAGS.eval_dir)
- if FLAGS.pipeline_config_path:
- configs = config_util.get_configs_from_pipeline_file(
- FLAGS.pipeline_config_path)
- tf.gfile.Copy(
- FLAGS.pipeline_config_path,
- os.path.join(FLAGS.eval_dir, 'pipeline.config'),
- overwrite=True)
- else:
- configs = config_util.get_configs_from_multiple_files(
- model_config_path=FLAGS.model_config_path,
- eval_config_path=FLAGS.eval_config_path,
- eval_input_config_path=FLAGS.input_config_path)
- for name, config in [('model.config', FLAGS.model_config_path),
- ('eval.config', FLAGS.eval_config_path),
- ('input.config', FLAGS.input_config_path)]:
- tf.gfile.Copy(config, os.path.join(FLAGS.eval_dir, name), overwrite=True)
-
- model_config = configs['model']
- eval_config = configs['eval_config']
- input_config = configs['eval_input_config']
- if FLAGS.eval_training_data:
- input_config = configs['train_input_config']
-
- model_fn = functools.partial(
- model_builder.build, model_config=model_config, is_training=False)
-
- def get_next(config):
- return dataset_builder.make_initializable_iterator(
- dataset_builder.build(config)).get_next()
-
- create_input_dict_fn = functools.partial(get_next, input_config)
-
- categories = label_map_util.create_categories_from_labelmap(
- input_config.label_map_path)
-
- if FLAGS.run_once:
- eval_config.max_evals = 1
-
- graph_rewriter_fn = None
- if 'graph_rewriter_config' in configs:
- graph_rewriter_fn = graph_rewriter_builder.build(
- configs['graph_rewriter_config'], is_training=False)
-
- evaluator.evaluate(
- create_input_dict_fn,
- model_fn,
- eval_config,
- categories,
- FLAGS.checkpoint_dir,
- FLAGS.eval_dir,
- graph_hook_fn=graph_rewriter_fn)
-
-
- if __name__ == '__main__':
- tf.app.run()
|