|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Tests for tensorflow_models.object_detection.metrics.coco_evaluation."""
-
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
-
- import numpy as np
- import tensorflow as tf
- from object_detection.core import standard_fields
- from object_detection.metrics import coco_evaluation
-
-
- def _get_categories_list():
- return [{
- 'id': 1,
- 'name': 'person'
- }, {
- 'id': 2,
- 'name': 'dog'
- }, {
- 'id': 3,
- 'name': 'cat'
- }]
-
-
- class CocoDetectionEvaluationTest(tf.test.TestCase):
-
- def testGetOneMAPWithMatchingGroundtruthAndDetections(self):
- """Tests that mAP is calculated correctly on GT and Detections."""
- coco_evaluator = coco_evaluation.CocoDetectionEvaluator(
- _get_categories_list())
- coco_evaluator.add_single_ground_truth_image_info(
- image_id='image1',
- groundtruth_dict={
- standard_fields.InputDataFields.groundtruth_boxes:
- np.array([[100., 100., 200., 200.]]),
- standard_fields.InputDataFields.groundtruth_classes: np.array([1])
- })
- coco_evaluator.add_single_detected_image_info(
- image_id='image1',
- detections_dict={
- standard_fields.DetectionResultFields.detection_boxes:
- np.array([[100., 100., 200., 200.]]),
- standard_fields.DetectionResultFields.detection_scores:
- np.array([.8]),
- standard_fields.DetectionResultFields.detection_classes:
- np.array([1])
- })
- coco_evaluator.add_single_ground_truth_image_info(
- image_id='image2',
- groundtruth_dict={
- standard_fields.InputDataFields.groundtruth_boxes:
- np.array([[50., 50., 100., 100.]]),
- standard_fields.InputDataFields.groundtruth_classes: np.array([1])
- })
- coco_evaluator.add_single_detected_image_info(
- image_id='image2',
- detections_dict={
- standard_fields.DetectionResultFields.detection_boxes:
- np.array([[50., 50., 100., 100.]]),
- standard_fields.DetectionResultFields.detection_scores:
- np.array([.8]),
- standard_fields.DetectionResultFields.detection_classes:
- np.array([1])
- })
- coco_evaluator.add_single_ground_truth_image_info(
- image_id='image3',
- groundtruth_dict={
- standard_fields.InputDataFields.groundtruth_boxes:
- np.array([[25., 25., 50., 50.]]),
- standard_fields.InputDataFields.groundtruth_classes: np.array([1])
- })
- coco_evaluator.add_single_detected_image_info(
- image_id='image3',
- detections_dict={
- standard_fields.DetectionResultFields.detection_boxes:
- np.array([[25., 25., 50., 50.]]),
- standard_fields.DetectionResultFields.detection_scores:
- np.array([.8]),
- standard_fields.DetectionResultFields.detection_classes:
- np.array([1])
- })
- metrics = coco_evaluator.evaluate()
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP'], 1.0)
-
- def testGetOneMAPWithMatchingGroundtruthAndDetectionsSkipCrowd(self):
- """Tests computing mAP with is_crowd GT boxes skipped."""
- coco_evaluator = coco_evaluation.CocoDetectionEvaluator(
- _get_categories_list())
- coco_evaluator.add_single_ground_truth_image_info(
- image_id='image1',
- groundtruth_dict={
- standard_fields.InputDataFields.groundtruth_boxes:
- np.array([[100., 100., 200., 200.], [99., 99., 200., 200.]]),
- standard_fields.InputDataFields.groundtruth_classes:
- np.array([1, 2]),
- standard_fields.InputDataFields.groundtruth_is_crowd:
- np.array([0, 1])
- })
- coco_evaluator.add_single_detected_image_info(
- image_id='image1',
- detections_dict={
- standard_fields.DetectionResultFields.detection_boxes:
- np.array([[100., 100., 200., 200.]]),
- standard_fields.DetectionResultFields.detection_scores:
- np.array([.8]),
- standard_fields.DetectionResultFields.detection_classes:
- np.array([1])
- })
- metrics = coco_evaluator.evaluate()
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP'], 1.0)
-
- def testGetOneMAPWithMatchingGroundtruthAndDetectionsEmptyCrowd(self):
- """Tests computing mAP with empty is_crowd array passed in."""
- coco_evaluator = coco_evaluation.CocoDetectionEvaluator(
- _get_categories_list())
- coco_evaluator.add_single_ground_truth_image_info(
- image_id='image1',
- groundtruth_dict={
- standard_fields.InputDataFields.groundtruth_boxes:
- np.array([[100., 100., 200., 200.]]),
- standard_fields.InputDataFields.groundtruth_classes:
- np.array([1]),
- standard_fields.InputDataFields.groundtruth_is_crowd:
- np.array([])
- })
- coco_evaluator.add_single_detected_image_info(
- image_id='image1',
- detections_dict={
- standard_fields.DetectionResultFields.detection_boxes:
- np.array([[100., 100., 200., 200.]]),
- standard_fields.DetectionResultFields.detection_scores:
- np.array([.8]),
- standard_fields.DetectionResultFields.detection_classes:
- np.array([1])
- })
- metrics = coco_evaluator.evaluate()
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP'], 1.0)
-
- def testRejectionOnDuplicateGroundtruth(self):
- """Tests that groundtruth cannot be added more than once for an image."""
- coco_evaluator = coco_evaluation.CocoDetectionEvaluator(
- _get_categories_list())
- # Add groundtruth
- image_key1 = 'img1'
- groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]],
- dtype=float)
- groundtruth_class_labels1 = np.array([1, 3, 1], dtype=int)
- coco_evaluator.add_single_ground_truth_image_info(image_key1, {
- standard_fields.InputDataFields.groundtruth_boxes:
- groundtruth_boxes1,
- standard_fields.InputDataFields.groundtruth_classes:
- groundtruth_class_labels1
- })
- groundtruth_lists_len = len(coco_evaluator._groundtruth_list)
-
- # Add groundtruth with the same image id.
- coco_evaluator.add_single_ground_truth_image_info(image_key1, {
- standard_fields.InputDataFields.groundtruth_boxes:
- groundtruth_boxes1,
- standard_fields.InputDataFields.groundtruth_classes:
- groundtruth_class_labels1
- })
- self.assertEqual(groundtruth_lists_len,
- len(coco_evaluator._groundtruth_list))
-
- def testRejectionOnDuplicateDetections(self):
- """Tests that detections cannot be added more than once for an image."""
- coco_evaluator = coco_evaluation.CocoDetectionEvaluator(
- _get_categories_list())
- # Add groundtruth
- coco_evaluator.add_single_ground_truth_image_info(
- image_id='image1',
- groundtruth_dict={
- standard_fields.InputDataFields.groundtruth_boxes:
- np.array([[99., 100., 200., 200.]]),
- standard_fields.InputDataFields.groundtruth_classes: np.array([1])
- })
- coco_evaluator.add_single_detected_image_info(
- image_id='image1',
- detections_dict={
- standard_fields.DetectionResultFields.detection_boxes:
- np.array([[100., 100., 200., 200.]]),
- standard_fields.DetectionResultFields.detection_scores:
- np.array([.8]),
- standard_fields.DetectionResultFields.detection_classes:
- np.array([1])
- })
- detections_lists_len = len(coco_evaluator._detection_boxes_list)
- coco_evaluator.add_single_detected_image_info(
- image_id='image1', # Note that this image id was previously added.
- detections_dict={
- standard_fields.DetectionResultFields.detection_boxes:
- np.array([[100., 100., 200., 200.]]),
- standard_fields.DetectionResultFields.detection_scores:
- np.array([.8]),
- standard_fields.DetectionResultFields.detection_classes:
- np.array([1])
- })
- self.assertEqual(detections_lists_len,
- len(coco_evaluator._detection_boxes_list))
-
- def testExceptionRaisedWithMissingGroundtruth(self):
- """Tests that exception is raised for detection with missing groundtruth."""
- coco_evaluator = coco_evaluation.CocoDetectionEvaluator(
- _get_categories_list())
- with self.assertRaises(ValueError):
- coco_evaluator.add_single_detected_image_info(
- image_id='image1',
- detections_dict={
- standard_fields.DetectionResultFields.detection_boxes:
- np.array([[100., 100., 200., 200.]]),
- standard_fields.DetectionResultFields.detection_scores:
- np.array([.8]),
- standard_fields.DetectionResultFields.detection_classes:
- np.array([1])
- })
-
-
- class CocoEvaluationPyFuncTest(tf.test.TestCase):
-
- def testGetOneMAPWithMatchingGroundtruthAndDetections(self):
- coco_evaluator = coco_evaluation.CocoDetectionEvaluator(
- _get_categories_list())
- image_id = tf.placeholder(tf.string, shape=())
- groundtruth_boxes = tf.placeholder(tf.float32, shape=(None, 4))
- groundtruth_classes = tf.placeholder(tf.float32, shape=(None))
- detection_boxes = tf.placeholder(tf.float32, shape=(None, 4))
- detection_scores = tf.placeholder(tf.float32, shape=(None))
- detection_classes = tf.placeholder(tf.float32, shape=(None))
-
- input_data_fields = standard_fields.InputDataFields
- detection_fields = standard_fields.DetectionResultFields
- eval_dict = {
- input_data_fields.key: image_id,
- input_data_fields.groundtruth_boxes: groundtruth_boxes,
- input_data_fields.groundtruth_classes: groundtruth_classes,
- detection_fields.detection_boxes: detection_boxes,
- detection_fields.detection_scores: detection_scores,
- detection_fields.detection_classes: detection_classes
- }
-
- eval_metric_ops = coco_evaluator.get_estimator_eval_metric_ops(eval_dict)
-
- _, update_op = eval_metric_ops['DetectionBoxes_Precision/mAP']
-
- with self.test_session() as sess:
- sess.run(update_op,
- feed_dict={
- image_id: 'image1',
- groundtruth_boxes: np.array([[100., 100., 200., 200.]]),
- groundtruth_classes: np.array([1]),
- detection_boxes: np.array([[100., 100., 200., 200.]]),
- detection_scores: np.array([.8]),
- detection_classes: np.array([1])
- })
- sess.run(update_op,
- feed_dict={
- image_id: 'image2',
- groundtruth_boxes: np.array([[50., 50., 100., 100.]]),
- groundtruth_classes: np.array([3]),
- detection_boxes: np.array([[50., 50., 100., 100.]]),
- detection_scores: np.array([.7]),
- detection_classes: np.array([3])
- })
- sess.run(update_op,
- feed_dict={
- image_id: 'image3',
- groundtruth_boxes: np.array([[25., 25., 50., 50.]]),
- groundtruth_classes: np.array([2]),
- detection_boxes: np.array([[25., 25., 50., 50.]]),
- detection_scores: np.array([.9]),
- detection_classes: np.array([2])
- })
- metrics = {}
- for key, (value_op, _) in eval_metric_ops.iteritems():
- metrics[key] = value_op
- metrics = sess.run(metrics)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP@.50IOU'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP@.75IOU'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP (large)'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP (medium)'],
- 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP (small)'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@1'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@10'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@100'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@100 (large)'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@100 (medium)'],
- 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@100 (small)'], 1.0)
- self.assertFalse(coco_evaluator._groundtruth_list)
- self.assertFalse(coco_evaluator._detection_boxes_list)
- self.assertFalse(coco_evaluator._image_ids)
-
- def testGetOneMAPWithMatchingGroundtruthAndDetectionsIsAnnotated(self):
- coco_evaluator = coco_evaluation.CocoDetectionEvaluator(
- _get_categories_list())
- image_id = tf.placeholder(tf.string, shape=())
- groundtruth_boxes = tf.placeholder(tf.float32, shape=(None, 4))
- groundtruth_classes = tf.placeholder(tf.float32, shape=(None))
- is_annotated = tf.placeholder(tf.bool, shape=())
- detection_boxes = tf.placeholder(tf.float32, shape=(None, 4))
- detection_scores = tf.placeholder(tf.float32, shape=(None))
- detection_classes = tf.placeholder(tf.float32, shape=(None))
-
- input_data_fields = standard_fields.InputDataFields
- detection_fields = standard_fields.DetectionResultFields
- eval_dict = {
- input_data_fields.key: image_id,
- input_data_fields.groundtruth_boxes: groundtruth_boxes,
- input_data_fields.groundtruth_classes: groundtruth_classes,
- 'is_annotated': is_annotated,
- detection_fields.detection_boxes: detection_boxes,
- detection_fields.detection_scores: detection_scores,
- detection_fields.detection_classes: detection_classes
- }
-
- eval_metric_ops = coco_evaluator.get_estimator_eval_metric_ops(eval_dict)
-
- _, update_op = eval_metric_ops['DetectionBoxes_Precision/mAP']
-
- with self.test_session() as sess:
- sess.run(update_op,
- feed_dict={
- image_id: 'image1',
- groundtruth_boxes: np.array([[100., 100., 200., 200.]]),
- groundtruth_classes: np.array([1]),
- is_annotated: True,
- detection_boxes: np.array([[100., 100., 200., 200.]]),
- detection_scores: np.array([.8]),
- detection_classes: np.array([1])
- })
- sess.run(update_op,
- feed_dict={
- image_id: 'image2',
- groundtruth_boxes: np.array([[50., 50., 100., 100.]]),
- groundtruth_classes: np.array([3]),
- is_annotated: True,
- detection_boxes: np.array([[50., 50., 100., 100.]]),
- detection_scores: np.array([.7]),
- detection_classes: np.array([3])
- })
- sess.run(update_op,
- feed_dict={
- image_id: 'image3',
- groundtruth_boxes: np.array([[25., 25., 50., 50.]]),
- groundtruth_classes: np.array([2]),
- is_annotated: True,
- detection_boxes: np.array([[25., 25., 50., 50.]]),
- detection_scores: np.array([.9]),
- detection_classes: np.array([2])
- })
- sess.run(update_op,
- feed_dict={
- image_id: 'image4',
- groundtruth_boxes: np.zeros((0, 4)),
- groundtruth_classes: np.zeros((0)),
- is_annotated: False, # Note that this image isn't annotated.
- detection_boxes: np.array([[25., 25., 50., 50.],
- [25., 25., 70., 50.],
- [25., 25., 80., 50.],
- [25., 25., 90., 50.]]),
- detection_scores: np.array([0.6, 0.7, 0.8, 0.9]),
- detection_classes: np.array([1, 2, 2, 3])
- })
- metrics = {}
- for key, (value_op, _) in eval_metric_ops.iteritems():
- metrics[key] = value_op
- metrics = sess.run(metrics)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP@.50IOU'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP@.75IOU'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP (large)'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP (medium)'],
- 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP (small)'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@1'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@10'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@100'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@100 (large)'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@100 (medium)'],
- 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@100 (small)'], 1.0)
- self.assertFalse(coco_evaluator._groundtruth_list)
- self.assertFalse(coco_evaluator._detection_boxes_list)
- self.assertFalse(coco_evaluator._image_ids)
-
- def testGetOneMAPWithMatchingGroundtruthAndDetectionsPadded(self):
- coco_evaluator = coco_evaluation.CocoDetectionEvaluator(
- _get_categories_list())
- image_id = tf.placeholder(tf.string, shape=())
- groundtruth_boxes = tf.placeholder(tf.float32, shape=(None, 4))
- groundtruth_classes = tf.placeholder(tf.float32, shape=(None))
- detection_boxes = tf.placeholder(tf.float32, shape=(None, 4))
- detection_scores = tf.placeholder(tf.float32, shape=(None))
- detection_classes = tf.placeholder(tf.float32, shape=(None))
-
- input_data_fields = standard_fields.InputDataFields
- detection_fields = standard_fields.DetectionResultFields
- eval_dict = {
- input_data_fields.key: image_id,
- input_data_fields.groundtruth_boxes: groundtruth_boxes,
- input_data_fields.groundtruth_classes: groundtruth_classes,
- detection_fields.detection_boxes: detection_boxes,
- detection_fields.detection_scores: detection_scores,
- detection_fields.detection_classes: detection_classes
- }
-
- eval_metric_ops = coco_evaluator.get_estimator_eval_metric_ops(eval_dict)
-
- _, update_op = eval_metric_ops['DetectionBoxes_Precision/mAP']
-
- with self.test_session() as sess:
- sess.run(
- update_op,
- feed_dict={
- image_id:
- 'image1',
- groundtruth_boxes:
- np.array([[100., 100., 200., 200.], [-1, -1, -1, -1]]),
- groundtruth_classes:
- np.array([1, -1]),
- detection_boxes:
- np.array([[100., 100., 200., 200.], [0., 0., 0., 0.]]),
- detection_scores:
- np.array([.8, 0.]),
- detection_classes:
- np.array([1, -1])
- })
- sess.run(
- update_op,
- feed_dict={
- image_id:
- 'image2',
- groundtruth_boxes:
- np.array([[50., 50., 100., 100.], [-1, -1, -1, -1]]),
- groundtruth_classes:
- np.array([3, -1]),
- detection_boxes:
- np.array([[50., 50., 100., 100.], [0., 0., 0., 0.]]),
- detection_scores:
- np.array([.7, 0.]),
- detection_classes:
- np.array([3, -1])
- })
- sess.run(
- update_op,
- feed_dict={
- image_id:
- 'image3',
- groundtruth_boxes:
- np.array([[25., 25., 50., 50.], [10., 10., 15., 15.]]),
- groundtruth_classes:
- np.array([2, 2]),
- detection_boxes:
- np.array([[25., 25., 50., 50.], [10., 10., 15., 15.]]),
- detection_scores:
- np.array([.95, .9]),
- detection_classes:
- np.array([2, 2])
- })
- metrics = {}
- for key, (value_op, _) in eval_metric_ops.iteritems():
- metrics[key] = value_op
- metrics = sess.run(metrics)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP@.50IOU'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP@.75IOU'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP (large)'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP (medium)'],
- 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP (small)'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@1'], 0.83333331)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@10'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@100'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@100 (large)'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@100 (medium)'],
- 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@100 (small)'], 1.0)
- self.assertFalse(coco_evaluator._groundtruth_list)
- self.assertFalse(coco_evaluator._detection_boxes_list)
- self.assertFalse(coco_evaluator._image_ids)
-
- def testGetOneMAPWithMatchingGroundtruthAndDetectionsBatched(self):
- coco_evaluator = coco_evaluation.CocoDetectionEvaluator(
- _get_categories_list())
- batch_size = 3
- image_id = tf.placeholder(tf.string, shape=(batch_size))
- groundtruth_boxes = tf.placeholder(tf.float32, shape=(batch_size, None, 4))
- groundtruth_classes = tf.placeholder(tf.float32, shape=(batch_size, None))
- detection_boxes = tf.placeholder(tf.float32, shape=(batch_size, None, 4))
- detection_scores = tf.placeholder(tf.float32, shape=(batch_size, None))
- detection_classes = tf.placeholder(tf.float32, shape=(batch_size, None))
-
- input_data_fields = standard_fields.InputDataFields
- detection_fields = standard_fields.DetectionResultFields
- eval_dict = {
- input_data_fields.key: image_id,
- input_data_fields.groundtruth_boxes: groundtruth_boxes,
- input_data_fields.groundtruth_classes: groundtruth_classes,
- detection_fields.detection_boxes: detection_boxes,
- detection_fields.detection_scores: detection_scores,
- detection_fields.detection_classes: detection_classes
- }
-
- eval_metric_ops = coco_evaluator.get_estimator_eval_metric_ops(eval_dict)
-
- _, update_op = eval_metric_ops['DetectionBoxes_Precision/mAP']
-
- with self.test_session() as sess:
- sess.run(update_op,
- feed_dict={
- image_id: ['image1', 'image2', 'image3'],
- groundtruth_boxes: np.array([[[100., 100., 200., 200.]],
- [[50., 50., 100., 100.]],
- [[25., 25., 50., 50.]]]),
- groundtruth_classes: np.array([[1], [3], [2]]),
- detection_boxes: np.array([[[100., 100., 200., 200.]],
- [[50., 50., 100., 100.]],
- [[25., 25., 50., 50.]]]),
- detection_scores: np.array([[.8], [.7], [.9]]),
- detection_classes: np.array([[1], [3], [2]])
- })
- metrics = {}
- for key, (value_op, _) in eval_metric_ops.iteritems():
- metrics[key] = value_op
- metrics = sess.run(metrics)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP@.50IOU'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP@.75IOU'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP (large)'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP (medium)'],
- 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP (small)'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@1'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@10'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@100'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@100 (large)'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@100 (medium)'],
- 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@100 (small)'], 1.0)
- self.assertFalse(coco_evaluator._groundtruth_list)
- self.assertFalse(coco_evaluator._detection_boxes_list)
- self.assertFalse(coco_evaluator._image_ids)
-
- def testGetOneMAPWithMatchingGroundtruthAndDetectionsPaddedBatches(self):
- coco_evaluator = coco_evaluation.CocoDetectionEvaluator(
- _get_categories_list())
- batch_size = 3
- image_id = tf.placeholder(tf.string, shape=(batch_size))
- groundtruth_boxes = tf.placeholder(tf.float32, shape=(batch_size, None, 4))
- groundtruth_classes = tf.placeholder(tf.float32, shape=(batch_size, None))
- num_gt_boxes_per_image = tf.placeholder(tf.int32, shape=(None))
- detection_boxes = tf.placeholder(tf.float32, shape=(batch_size, None, 4))
- detection_scores = tf.placeholder(tf.float32, shape=(batch_size, None))
- detection_classes = tf.placeholder(tf.float32, shape=(batch_size, None))
- num_det_boxes_per_image = tf.placeholder(tf.int32, shape=(None))
-
- input_data_fields = standard_fields.InputDataFields
- detection_fields = standard_fields.DetectionResultFields
- eval_dict = {
- input_data_fields.key: image_id,
- input_data_fields.groundtruth_boxes: groundtruth_boxes,
- input_data_fields.groundtruth_classes: groundtruth_classes,
- detection_fields.detection_boxes: detection_boxes,
- detection_fields.detection_scores: detection_scores,
- detection_fields.detection_classes: detection_classes,
- 'num_groundtruth_boxes_per_image': num_gt_boxes_per_image,
- 'num_det_boxes_per_image': num_det_boxes_per_image
- }
-
- eval_metric_ops = coco_evaluator.get_estimator_eval_metric_ops(eval_dict)
-
- _, update_op = eval_metric_ops['DetectionBoxes_Precision/mAP']
-
- with self.test_session() as sess:
- sess.run(
- update_op,
- feed_dict={
- image_id: ['image1', 'image2', 'image3'],
- groundtruth_boxes:
- np.array([[[100., 100., 200., 200.], [-1, -1, -1, -1]],
- [[50., 50., 100., 100.], [-1, -1, -1, -1]],
- [[25., 25., 50., 50.], [10., 10., 15., 15.]]]),
- groundtruth_classes:
- np.array([[1, -1], [3, -1], [2, 2]]),
- num_gt_boxes_per_image:
- np.array([1, 1, 2]),
- detection_boxes:
- np.array([[[100., 100., 200., 200.],
- [0., 0., 0., 0.],
- [0., 0., 0., 0.]],
- [[50., 50., 100., 100.],
- [0., 0., 0., 0.],
- [0., 0., 0., 0.]],
- [[25., 25., 50., 50.],
- [10., 10., 15., 15.],
- [10., 10., 15., 15.]]]),
- detection_scores:
- np.array([[.8, 0., 0.], [.7, 0., 0.], [.95, .9, 0.9]]),
- detection_classes:
- np.array([[1, -1, -1], [3, -1, -1], [2, 2, 2]]),
- num_det_boxes_per_image:
- np.array([1, 1, 3]),
- })
-
- # Check the number of bounding boxes added.
- self.assertEqual(len(coco_evaluator._groundtruth_list), 4)
- self.assertEqual(len(coco_evaluator._detection_boxes_list), 5)
-
- metrics = {}
- for key, (value_op, _) in eval_metric_ops.iteritems():
- metrics[key] = value_op
- metrics = sess.run(metrics)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP@.50IOU'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP@.75IOU'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP (large)'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP (medium)'],
- 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Precision/mAP (small)'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@1'], 0.83333331)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@10'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@100'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@100 (large)'], 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@100 (medium)'],
- 1.0)
- self.assertAlmostEqual(metrics['DetectionBoxes_Recall/AR@100 (small)'], 1.0)
- self.assertFalse(coco_evaluator._groundtruth_list)
- self.assertFalse(coco_evaluator._detection_boxes_list)
- self.assertFalse(coco_evaluator._image_ids)
-
-
- class CocoMaskEvaluationTest(tf.test.TestCase):
-
- def testGetOneMAPWithMatchingGroundtruthAndDetections(self):
- coco_evaluator = coco_evaluation.CocoMaskEvaluator(_get_categories_list())
- coco_evaluator.add_single_ground_truth_image_info(
- image_id='image1',
- groundtruth_dict={
- standard_fields.InputDataFields.groundtruth_boxes:
- np.array([[100., 100., 200., 200.]]),
- standard_fields.InputDataFields.groundtruth_classes: np.array([1]),
- standard_fields.InputDataFields.groundtruth_instance_masks:
- np.pad(np.ones([1, 100, 100], dtype=np.uint8),
- ((0, 0), (10, 10), (10, 10)), mode='constant')
- })
- coco_evaluator.add_single_detected_image_info(
- image_id='image1',
- detections_dict={
- standard_fields.DetectionResultFields.detection_boxes:
- np.array([[100., 100., 200., 200.]]),
- standard_fields.DetectionResultFields.detection_scores:
- np.array([.8]),
- standard_fields.DetectionResultFields.detection_classes:
- np.array([1]),
- standard_fields.DetectionResultFields.detection_masks:
- np.pad(np.ones([1, 100, 100], dtype=np.uint8),
- ((0, 0), (10, 10), (10, 10)), mode='constant')
- })
- coco_evaluator.add_single_ground_truth_image_info(
- image_id='image2',
- groundtruth_dict={
- standard_fields.InputDataFields.groundtruth_boxes:
- np.array([[50., 50., 100., 100.]]),
- standard_fields.InputDataFields.groundtruth_classes: np.array([1]),
- standard_fields.InputDataFields.groundtruth_instance_masks:
- np.pad(np.ones([1, 50, 50], dtype=np.uint8),
- ((0, 0), (10, 10), (10, 10)), mode='constant')
- })
- coco_evaluator.add_single_detected_image_info(
- image_id='image2',
- detections_dict={
- standard_fields.DetectionResultFields.detection_boxes:
- np.array([[50., 50., 100., 100.]]),
- standard_fields.DetectionResultFields.detection_scores:
- np.array([.8]),
- standard_fields.DetectionResultFields.detection_classes:
- np.array([1]),
- standard_fields.DetectionResultFields.detection_masks:
- np.pad(np.ones([1, 50, 50], dtype=np.uint8),
- ((0, 0), (10, 10), (10, 10)), mode='constant')
- })
- coco_evaluator.add_single_ground_truth_image_info(
- image_id='image3',
- groundtruth_dict={
- standard_fields.InputDataFields.groundtruth_boxes:
- np.array([[25., 25., 50., 50.]]),
- standard_fields.InputDataFields.groundtruth_classes: np.array([1]),
- standard_fields.InputDataFields.groundtruth_instance_masks:
- np.pad(np.ones([1, 25, 25], dtype=np.uint8),
- ((0, 0), (10, 10), (10, 10)), mode='constant')
- })
- coco_evaluator.add_single_detected_image_info(
- image_id='image3',
- detections_dict={
- standard_fields.DetectionResultFields.detection_boxes:
- np.array([[25., 25., 50., 50.]]),
- standard_fields.DetectionResultFields.detection_scores:
- np.array([.8]),
- standard_fields.DetectionResultFields.detection_classes:
- np.array([1]),
- standard_fields.DetectionResultFields.detection_masks:
- np.pad(np.ones([1, 25, 25], dtype=np.uint8),
- ((0, 0), (10, 10), (10, 10)), mode='constant')
- })
- metrics = coco_evaluator.evaluate()
- self.assertAlmostEqual(metrics['DetectionMasks_Precision/mAP'], 1.0)
- coco_evaluator.clear()
- self.assertFalse(coco_evaluator._image_id_to_mask_shape_map)
- self.assertFalse(coco_evaluator._image_ids_with_detections)
- self.assertFalse(coco_evaluator._groundtruth_list)
- self.assertFalse(coco_evaluator._detection_masks_list)
-
-
- class CocoMaskEvaluationPyFuncTest(tf.test.TestCase):
-
- def testGetOneMAPWithMatchingGroundtruthAndDetections(self):
- coco_evaluator = coco_evaluation.CocoMaskEvaluator(_get_categories_list())
- image_id = tf.placeholder(tf.string, shape=())
- groundtruth_boxes = tf.placeholder(tf.float32, shape=(None, 4))
- groundtruth_classes = tf.placeholder(tf.float32, shape=(None))
- groundtruth_masks = tf.placeholder(tf.uint8, shape=(None, None, None))
- detection_scores = tf.placeholder(tf.float32, shape=(None))
- detection_classes = tf.placeholder(tf.float32, shape=(None))
- detection_masks = tf.placeholder(tf.uint8, shape=(None, None, None))
-
- input_data_fields = standard_fields.InputDataFields
- detection_fields = standard_fields.DetectionResultFields
- eval_dict = {
- input_data_fields.key: image_id,
- input_data_fields.groundtruth_boxes: groundtruth_boxes,
- input_data_fields.groundtruth_classes: groundtruth_classes,
- input_data_fields.groundtruth_instance_masks: groundtruth_masks,
- detection_fields.detection_scores: detection_scores,
- detection_fields.detection_classes: detection_classes,
- detection_fields.detection_masks: detection_masks,
- }
-
- eval_metric_ops = coco_evaluator.get_estimator_eval_metric_ops(eval_dict)
-
- _, update_op = eval_metric_ops['DetectionMasks_Precision/mAP']
-
- with self.test_session() as sess:
- sess.run(
- update_op,
- feed_dict={
- image_id:
- 'image1',
- groundtruth_boxes:
- np.array([[100., 100., 200., 200.], [50., 50., 100., 100.]]),
- groundtruth_classes:
- np.array([1, 2]),
- groundtruth_masks:
- np.stack([
- np.pad(
- np.ones([100, 100], dtype=np.uint8), ((10, 10),
- (10, 10)),
- mode='constant'),
- np.pad(
- np.ones([50, 50], dtype=np.uint8), ((0, 70), (0, 70)),
- mode='constant')
- ]),
- detection_scores:
- np.array([.9, .8]),
- detection_classes:
- np.array([2, 1]),
- detection_masks:
- np.stack([
- np.pad(
- np.ones([50, 50], dtype=np.uint8), ((0, 70), (0, 70)),
- mode='constant'),
- np.pad(
- np.ones([100, 100], dtype=np.uint8), ((10, 10),
- (10, 10)),
- mode='constant'),
- ])
- })
- sess.run(update_op,
- feed_dict={
- image_id: 'image2',
- groundtruth_boxes: np.array([[50., 50., 100., 100.]]),
- groundtruth_classes: np.array([1]),
- groundtruth_masks: np.pad(np.ones([1, 50, 50],
- dtype=np.uint8),
- ((0, 0), (10, 10), (10, 10)),
- mode='constant'),
- detection_scores: np.array([.8]),
- detection_classes: np.array([1]),
- detection_masks: np.pad(np.ones([1, 50, 50], dtype=np.uint8),
- ((0, 0), (10, 10), (10, 10)),
- mode='constant')
- })
- sess.run(update_op,
- feed_dict={
- image_id: 'image3',
- groundtruth_boxes: np.array([[25., 25., 50., 50.]]),
- groundtruth_classes: np.array([1]),
- groundtruth_masks: np.pad(np.ones([1, 25, 25],
- dtype=np.uint8),
- ((0, 0), (10, 10), (10, 10)),
- mode='constant'),
- detection_scores: np.array([.8]),
- detection_classes: np.array([1]),
- detection_masks: np.pad(np.ones([1, 25, 25],
- dtype=np.uint8),
- ((0, 0), (10, 10), (10, 10)),
- mode='constant')
- })
- metrics = {}
- for key, (value_op, _) in eval_metric_ops.iteritems():
- metrics[key] = value_op
- metrics = sess.run(metrics)
- self.assertAlmostEqual(metrics['DetectionMasks_Precision/mAP'], 1.0)
- self.assertAlmostEqual(metrics['DetectionMasks_Precision/mAP@.50IOU'], 1.0)
- self.assertAlmostEqual(metrics['DetectionMasks_Precision/mAP@.75IOU'], 1.0)
- self.assertAlmostEqual(metrics['DetectionMasks_Precision/mAP (large)'], 1.0)
- self.assertAlmostEqual(metrics['DetectionMasks_Precision/mAP (medium)'],
- 1.0)
- self.assertAlmostEqual(metrics['DetectionMasks_Precision/mAP (small)'], 1.0)
- self.assertAlmostEqual(metrics['DetectionMasks_Recall/AR@1'], 1.0)
- self.assertAlmostEqual(metrics['DetectionMasks_Recall/AR@10'], 1.0)
- self.assertAlmostEqual(metrics['DetectionMasks_Recall/AR@100'], 1.0)
- self.assertAlmostEqual(metrics['DetectionMasks_Recall/AR@100 (large)'], 1.0)
- self.assertAlmostEqual(metrics['DetectionMasks_Recall/AR@100 (medium)'],
- 1.0)
- self.assertAlmostEqual(metrics['DetectionMasks_Recall/AR@100 (small)'], 1.0)
- self.assertFalse(coco_evaluator._groundtruth_list)
- self.assertFalse(coco_evaluator._image_ids_with_detections)
- self.assertFalse(coco_evaluator._image_id_to_mask_shape_map)
- self.assertFalse(coco_evaluator._detection_masks_list)
-
- def testGetOneMAPWithMatchingGroundtruthAndDetectionsBatched(self):
- coco_evaluator = coco_evaluation.CocoMaskEvaluator(_get_categories_list())
- batch_size = 3
- image_id = tf.placeholder(tf.string, shape=(batch_size))
- groundtruth_boxes = tf.placeholder(tf.float32, shape=(batch_size, None, 4))
- groundtruth_classes = tf.placeholder(tf.float32, shape=(batch_size, None))
- groundtruth_masks = tf.placeholder(
- tf.uint8, shape=(batch_size, None, None, None))
- detection_scores = tf.placeholder(tf.float32, shape=(batch_size, None))
- detection_classes = tf.placeholder(tf.float32, shape=(batch_size, None))
- detection_masks = tf.placeholder(
- tf.uint8, shape=(batch_size, None, None, None))
-
- input_data_fields = standard_fields.InputDataFields
- detection_fields = standard_fields.DetectionResultFields
- eval_dict = {
- input_data_fields.key: image_id,
- input_data_fields.groundtruth_boxes: groundtruth_boxes,
- input_data_fields.groundtruth_classes: groundtruth_classes,
- input_data_fields.groundtruth_instance_masks: groundtruth_masks,
- detection_fields.detection_scores: detection_scores,
- detection_fields.detection_classes: detection_classes,
- detection_fields.detection_masks: detection_masks,
- }
-
- eval_metric_ops = coco_evaluator.get_estimator_eval_metric_ops(eval_dict)
-
- _, update_op = eval_metric_ops['DetectionMasks_Precision/mAP']
-
- with self.test_session() as sess:
- sess.run(
- update_op,
- feed_dict={
- image_id: ['image1', 'image2', 'image3'],
- groundtruth_boxes:
- np.array([[[100., 100., 200., 200.]],
- [[50., 50., 100., 100.]],
- [[25., 25., 50., 50.]]]),
- groundtruth_classes:
- np.array([[1], [1], [1]]),
- groundtruth_masks:
- np.stack([
- np.pad(
- np.ones([1, 100, 100], dtype=np.uint8),
- ((0, 0), (0, 0), (0, 0)),
- mode='constant'),
- np.pad(
- np.ones([1, 50, 50], dtype=np.uint8),
- ((0, 0), (25, 25), (25, 25)),
- mode='constant'),
- np.pad(
- np.ones([1, 25, 25], dtype=np.uint8),
- ((0, 0), (37, 38), (37, 38)),
- mode='constant')
- ],
- axis=0),
- detection_scores:
- np.array([[.8], [.8], [.8]]),
- detection_classes:
- np.array([[1], [1], [1]]),
- detection_masks:
- np.stack([
- np.pad(
- np.ones([1, 100, 100], dtype=np.uint8),
- ((0, 0), (0, 0), (0, 0)),
- mode='constant'),
- np.pad(
- np.ones([1, 50, 50], dtype=np.uint8),
- ((0, 0), (25, 25), (25, 25)),
- mode='constant'),
- np.pad(
- np.ones([1, 25, 25], dtype=np.uint8),
- ((0, 0), (37, 38), (37, 38)),
- mode='constant')
- ],
- axis=0)
- })
- metrics = {}
- for key, (value_op, _) in eval_metric_ops.iteritems():
- metrics[key] = value_op
- metrics = sess.run(metrics)
- self.assertAlmostEqual(metrics['DetectionMasks_Precision/mAP'], 1.0)
- self.assertAlmostEqual(metrics['DetectionMasks_Precision/mAP@.50IOU'], 1.0)
- self.assertAlmostEqual(metrics['DetectionMasks_Precision/mAP@.75IOU'], 1.0)
- self.assertAlmostEqual(metrics['DetectionMasks_Precision/mAP (large)'], 1.0)
- self.assertAlmostEqual(metrics['DetectionMasks_Precision/mAP (medium)'],
- 1.0)
- self.assertAlmostEqual(metrics['DetectionMasks_Precision/mAP (small)'], 1.0)
- self.assertAlmostEqual(metrics['DetectionMasks_Recall/AR@1'], 1.0)
- self.assertAlmostEqual(metrics['DetectionMasks_Recall/AR@10'], 1.0)
- self.assertAlmostEqual(metrics['DetectionMasks_Recall/AR@100'], 1.0)
- self.assertAlmostEqual(metrics['DetectionMasks_Recall/AR@100 (large)'], 1.0)
- self.assertAlmostEqual(metrics['DetectionMasks_Recall/AR@100 (medium)'],
- 1.0)
- self.assertAlmostEqual(metrics['DetectionMasks_Recall/AR@100 (small)'], 1.0)
- self.assertFalse(coco_evaluator._groundtruth_list)
- self.assertFalse(coco_evaluator._image_ids_with_detections)
- self.assertFalse(coco_evaluator._image_id_to_mask_shape_map)
- self.assertFalse(coco_evaluator._detection_masks_list)
-
-
- if __name__ == '__main__':
- tf.test.main()
|