|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Tests for object detection model library."""
-
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
-
- import functools
- import os
-
- import numpy as np
- import tensorflow as tf
-
- from tensorflow.contrib.tpu.python.tpu import tpu_config
- from tensorflow.contrib.tpu.python.tpu import tpu_estimator
-
- from object_detection import inputs
- from object_detection import model_hparams
- from object_detection import model_lib
- from object_detection.builders import model_builder
- from object_detection.core import standard_fields as fields
- from object_detection.utils import config_util
-
-
- # Model for test. Options are:
- # 'ssd_inception_v2_pets', 'faster_rcnn_resnet50_pets'
- MODEL_NAME_FOR_TEST = 'ssd_inception_v2_pets'
-
-
- def _get_data_path():
- """Returns an absolute path to TFRecord file."""
- return os.path.join(tf.resource_loader.get_data_files_path(), 'test_data',
- 'pets_examples.record')
-
-
- def get_pipeline_config_path(model_name):
- """Returns path to the local pipeline config file."""
- return os.path.join(tf.resource_loader.get_data_files_path(), 'samples',
- 'configs', model_name + '.config')
-
-
- def _get_labelmap_path():
- """Returns an absolute path to label map file."""
- return os.path.join(tf.resource_loader.get_data_files_path(), 'data',
- 'pet_label_map.pbtxt')
-
-
- def _get_configs_for_model(model_name):
- """Returns configurations for model."""
- filename = get_pipeline_config_path(model_name)
- data_path = _get_data_path()
- label_map_path = _get_labelmap_path()
- configs = config_util.get_configs_from_pipeline_file(filename)
- override_dict = {
- 'train_input_path': data_path,
- 'eval_input_path': data_path,
- 'label_map_path': label_map_path
- }
- configs = config_util.merge_external_params_with_configs(
- configs, kwargs_dict=override_dict)
- return configs
-
-
- def _make_initializable_iterator(dataset):
- """Creates an iterator, and initializes tables.
-
- Args:
- dataset: A `tf.data.Dataset` object.
-
- Returns:
- A `tf.data.Iterator`.
- """
- iterator = dataset.make_initializable_iterator()
- tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer)
- return iterator
-
-
- class ModelLibTest(tf.test.TestCase):
-
- @classmethod
- def setUpClass(cls):
- tf.reset_default_graph()
-
- def _assert_model_fn_for_train_eval(self, configs, mode,
- class_agnostic=False):
- model_config = configs['model']
- train_config = configs['train_config']
- with tf.Graph().as_default():
- if mode == 'train':
- features, labels = _make_initializable_iterator(
- inputs.create_train_input_fn(configs['train_config'],
- configs['train_input_config'],
- configs['model'])()).get_next()
- model_mode = tf.estimator.ModeKeys.TRAIN
- batch_size = train_config.batch_size
- elif mode == 'eval':
- features, labels = _make_initializable_iterator(
- inputs.create_eval_input_fn(configs['eval_config'],
- configs['eval_input_config'],
- configs['model'])()).get_next()
- model_mode = tf.estimator.ModeKeys.EVAL
- batch_size = 1
- elif mode == 'eval_on_train':
- features, labels = _make_initializable_iterator(
- inputs.create_eval_input_fn(configs['eval_config'],
- configs['train_input_config'],
- configs['model'])()).get_next()
- model_mode = tf.estimator.ModeKeys.EVAL
- batch_size = 1
-
- detection_model_fn = functools.partial(
- model_builder.build, model_config=model_config, is_training=True)
-
- hparams = model_hparams.create_hparams(
- hparams_overrides='load_pretrained=false')
-
- model_fn = model_lib.create_model_fn(detection_model_fn, configs, hparams)
- estimator_spec = model_fn(features, labels, model_mode)
-
- self.assertIsNotNone(estimator_spec.loss)
- self.assertIsNotNone(estimator_spec.predictions)
- if mode == 'eval' or mode == 'eval_on_train':
- if class_agnostic:
- self.assertNotIn('detection_classes', estimator_spec.predictions)
- else:
- detection_classes = estimator_spec.predictions['detection_classes']
- self.assertEqual(batch_size, detection_classes.shape.as_list()[0])
- self.assertEqual(tf.float32, detection_classes.dtype)
- detection_boxes = estimator_spec.predictions['detection_boxes']
- detection_scores = estimator_spec.predictions['detection_scores']
- num_detections = estimator_spec.predictions['num_detections']
- self.assertEqual(batch_size, detection_boxes.shape.as_list()[0])
- self.assertEqual(tf.float32, detection_boxes.dtype)
- self.assertEqual(batch_size, detection_scores.shape.as_list()[0])
- self.assertEqual(tf.float32, detection_scores.dtype)
- self.assertEqual(tf.float32, num_detections.dtype)
- if mode == 'eval':
- self.assertIn('Detections_Left_Groundtruth_Right/0',
- estimator_spec.eval_metric_ops)
- if model_mode == tf.estimator.ModeKeys.TRAIN:
- self.assertIsNotNone(estimator_spec.train_op)
- return estimator_spec
-
- def _assert_model_fn_for_predict(self, configs):
- model_config = configs['model']
-
- with tf.Graph().as_default():
- features, _ = _make_initializable_iterator(
- inputs.create_eval_input_fn(configs['eval_config'],
- configs['eval_input_config'],
- configs['model'])()).get_next()
- detection_model_fn = functools.partial(
- model_builder.build, model_config=model_config, is_training=False)
-
- hparams = model_hparams.create_hparams(
- hparams_overrides='load_pretrained=false')
-
- model_fn = model_lib.create_model_fn(detection_model_fn, configs, hparams)
- estimator_spec = model_fn(features, None, tf.estimator.ModeKeys.PREDICT)
-
- self.assertIsNone(estimator_spec.loss)
- self.assertIsNone(estimator_spec.train_op)
- self.assertIsNotNone(estimator_spec.predictions)
- self.assertIsNotNone(estimator_spec.export_outputs)
- self.assertIn(tf.saved_model.signature_constants.PREDICT_METHOD_NAME,
- estimator_spec.export_outputs)
-
- def test_model_fn_in_train_mode(self):
- """Tests the model function in TRAIN mode."""
- configs = _get_configs_for_model(MODEL_NAME_FOR_TEST)
- self._assert_model_fn_for_train_eval(configs, 'train')
-
- def test_model_fn_in_train_mode_freeze_all_variables(self):
- """Tests model_fn TRAIN mode with all variables frozen."""
- configs = _get_configs_for_model(MODEL_NAME_FOR_TEST)
- configs['train_config'].freeze_variables.append('.*')
- with self.assertRaisesRegexp(ValueError, 'No variables to optimize'):
- self._assert_model_fn_for_train_eval(configs, 'train')
-
- def test_model_fn_in_train_mode_freeze_all_included_variables(self):
- """Tests model_fn TRAIN mode with all included variables frozen."""
- configs = _get_configs_for_model(MODEL_NAME_FOR_TEST)
- train_config = configs['train_config']
- train_config.update_trainable_variables.append('FeatureExtractor')
- train_config.freeze_variables.append('.*')
- with self.assertRaisesRegexp(ValueError, 'No variables to optimize'):
- self._assert_model_fn_for_train_eval(configs, 'train')
-
- def test_model_fn_in_train_mode_freeze_box_predictor(self):
- """Tests model_fn TRAIN mode with FeatureExtractor variables frozen."""
- configs = _get_configs_for_model(MODEL_NAME_FOR_TEST)
- train_config = configs['train_config']
- train_config.update_trainable_variables.append('FeatureExtractor')
- train_config.update_trainable_variables.append('BoxPredictor')
- train_config.freeze_variables.append('FeatureExtractor')
- self._assert_model_fn_for_train_eval(configs, 'train')
-
- def test_model_fn_in_eval_mode(self):
- """Tests the model function in EVAL mode."""
- configs = _get_configs_for_model(MODEL_NAME_FOR_TEST)
- self._assert_model_fn_for_train_eval(configs, 'eval')
-
- def test_model_fn_in_eval_on_train_mode(self):
- """Tests the model function in EVAL mode with train data."""
- configs = _get_configs_for_model(MODEL_NAME_FOR_TEST)
- self._assert_model_fn_for_train_eval(configs, 'eval_on_train')
-
- def test_model_fn_in_predict_mode(self):
- """Tests the model function in PREDICT mode."""
- configs = _get_configs_for_model(MODEL_NAME_FOR_TEST)
- self._assert_model_fn_for_predict(configs)
-
- def test_create_estimator_and_inputs(self):
- """Tests that Estimator and input function are constructed correctly."""
- run_config = tf.estimator.RunConfig()
- hparams = model_hparams.create_hparams(
- hparams_overrides='load_pretrained=false')
- pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
- train_steps = 20
- train_and_eval_dict = model_lib.create_estimator_and_inputs(
- run_config,
- hparams,
- pipeline_config_path,
- train_steps=train_steps)
- estimator = train_and_eval_dict['estimator']
- train_steps = train_and_eval_dict['train_steps']
- self.assertIsInstance(estimator, tf.estimator.Estimator)
- self.assertEqual(20, train_steps)
- self.assertIn('train_input_fn', train_and_eval_dict)
- self.assertIn('eval_input_fns', train_and_eval_dict)
- self.assertIn('eval_on_train_input_fn', train_and_eval_dict)
-
- def test_create_estimator_with_default_train_eval_steps(self):
- """Tests that number of train/eval defaults to config values."""
- run_config = tf.estimator.RunConfig()
- hparams = model_hparams.create_hparams(
- hparams_overrides='load_pretrained=false')
- pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- config_train_steps = configs['train_config'].num_steps
- train_and_eval_dict = model_lib.create_estimator_and_inputs(
- run_config, hparams, pipeline_config_path)
- estimator = train_and_eval_dict['estimator']
- train_steps = train_and_eval_dict['train_steps']
-
- self.assertIsInstance(estimator, tf.estimator.Estimator)
- self.assertEqual(config_train_steps, train_steps)
-
- def test_create_tpu_estimator_and_inputs(self):
- """Tests that number of train/eval defaults to config values."""
-
- run_config = tpu_config.RunConfig()
- hparams = model_hparams.create_hparams(
- hparams_overrides='load_pretrained=false')
- pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
- train_steps = 20
- train_and_eval_dict = model_lib.create_estimator_and_inputs(
- run_config,
- hparams,
- pipeline_config_path,
- train_steps=train_steps,
- use_tpu_estimator=True)
- estimator = train_and_eval_dict['estimator']
- train_steps = train_and_eval_dict['train_steps']
-
- self.assertIsInstance(estimator, tpu_estimator.TPUEstimator)
- self.assertEqual(20, train_steps)
-
- def test_create_train_and_eval_specs(self):
- """Tests that `TrainSpec` and `EvalSpec` is created correctly."""
- run_config = tf.estimator.RunConfig()
- hparams = model_hparams.create_hparams(
- hparams_overrides='load_pretrained=false')
- pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
- train_steps = 20
- train_and_eval_dict = model_lib.create_estimator_and_inputs(
- run_config,
- hparams,
- pipeline_config_path,
- train_steps=train_steps)
- train_input_fn = train_and_eval_dict['train_input_fn']
- eval_input_fns = train_and_eval_dict['eval_input_fns']
- eval_on_train_input_fn = train_and_eval_dict['eval_on_train_input_fn']
- predict_input_fn = train_and_eval_dict['predict_input_fn']
- train_steps = train_and_eval_dict['train_steps']
-
- train_spec, eval_specs = model_lib.create_train_and_eval_specs(
- train_input_fn,
- eval_input_fns,
- eval_on_train_input_fn,
- predict_input_fn,
- train_steps,
- eval_on_train_data=True,
- final_exporter_name='exporter',
- eval_spec_names=['holdout'])
- self.assertEqual(train_steps, train_spec.max_steps)
- self.assertEqual(2, len(eval_specs))
- self.assertEqual(None, eval_specs[0].steps)
- self.assertEqual('holdout', eval_specs[0].name)
- self.assertEqual('exporter', eval_specs[0].exporters[0].name)
- self.assertEqual(None, eval_specs[1].steps)
- self.assertEqual('eval_on_train', eval_specs[1].name)
-
- def test_experiment(self):
- """Tests that the `Experiment` object is constructed correctly."""
- run_config = tf.estimator.RunConfig()
- hparams = model_hparams.create_hparams(
- hparams_overrides='load_pretrained=false')
- pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
- experiment = model_lib.populate_experiment(
- run_config,
- hparams,
- pipeline_config_path,
- train_steps=10,
- eval_steps=20)
- self.assertEqual(10, experiment.train_steps)
- self.assertEqual(None, experiment.eval_steps)
-
-
- class UnbatchTensorsTest(tf.test.TestCase):
-
- def test_unbatch_without_unpadding(self):
- image_placeholder = tf.placeholder(tf.float32, [2, None, None, None])
- groundtruth_boxes_placeholder = tf.placeholder(tf.float32, [2, None, None])
- groundtruth_classes_placeholder = tf.placeholder(tf.float32,
- [2, None, None])
- groundtruth_weights_placeholder = tf.placeholder(tf.float32, [2, None])
-
- tensor_dict = {
- fields.InputDataFields.image:
- image_placeholder,
- fields.InputDataFields.groundtruth_boxes:
- groundtruth_boxes_placeholder,
- fields.InputDataFields.groundtruth_classes:
- groundtruth_classes_placeholder,
- fields.InputDataFields.groundtruth_weights:
- groundtruth_weights_placeholder
- }
- unbatched_tensor_dict = model_lib.unstack_batch(
- tensor_dict, unpad_groundtruth_tensors=False)
-
- with self.test_session() as sess:
- unbatched_tensor_dict_out = sess.run(
- unbatched_tensor_dict,
- feed_dict={
- image_placeholder:
- np.random.rand(2, 4, 4, 3).astype(np.float32),
- groundtruth_boxes_placeholder:
- np.random.rand(2, 5, 4).astype(np.float32),
- groundtruth_classes_placeholder:
- np.random.rand(2, 5, 6).astype(np.float32),
- groundtruth_weights_placeholder:
- np.random.rand(2, 5).astype(np.float32)
- })
- for image_out in unbatched_tensor_dict_out[fields.InputDataFields.image]:
- self.assertAllEqual(image_out.shape, [4, 4, 3])
- for groundtruth_boxes_out in unbatched_tensor_dict_out[
- fields.InputDataFields.groundtruth_boxes]:
- self.assertAllEqual(groundtruth_boxes_out.shape, [5, 4])
- for groundtruth_classes_out in unbatched_tensor_dict_out[
- fields.InputDataFields.groundtruth_classes]:
- self.assertAllEqual(groundtruth_classes_out.shape, [5, 6])
- for groundtruth_weights_out in unbatched_tensor_dict_out[
- fields.InputDataFields.groundtruth_weights]:
- self.assertAllEqual(groundtruth_weights_out.shape, [5])
-
- def test_unbatch_and_unpad_groundtruth_tensors(self):
- image_placeholder = tf.placeholder(tf.float32, [2, None, None, None])
- groundtruth_boxes_placeholder = tf.placeholder(tf.float32, [2, 5, None])
- groundtruth_classes_placeholder = tf.placeholder(tf.float32, [2, 5, None])
- groundtruth_weights_placeholder = tf.placeholder(tf.float32, [2, 5])
- num_groundtruth_placeholder = tf.placeholder(tf.int32, [2])
-
- tensor_dict = {
- fields.InputDataFields.image:
- image_placeholder,
- fields.InputDataFields.groundtruth_boxes:
- groundtruth_boxes_placeholder,
- fields.InputDataFields.groundtruth_classes:
- groundtruth_classes_placeholder,
- fields.InputDataFields.groundtruth_weights:
- groundtruth_weights_placeholder,
- fields.InputDataFields.num_groundtruth_boxes:
- num_groundtruth_placeholder
- }
- unbatched_tensor_dict = model_lib.unstack_batch(
- tensor_dict, unpad_groundtruth_tensors=True)
- with self.test_session() as sess:
- unbatched_tensor_dict_out = sess.run(
- unbatched_tensor_dict,
- feed_dict={
- image_placeholder:
- np.random.rand(2, 4, 4, 3).astype(np.float32),
- groundtruth_boxes_placeholder:
- np.random.rand(2, 5, 4).astype(np.float32),
- groundtruth_classes_placeholder:
- np.random.rand(2, 5, 6).astype(np.float32),
- groundtruth_weights_placeholder:
- np.random.rand(2, 5).astype(np.float32),
- num_groundtruth_placeholder:
- np.array([3, 3], np.int32)
- })
- for image_out in unbatched_tensor_dict_out[fields.InputDataFields.image]:
- self.assertAllEqual(image_out.shape, [4, 4, 3])
- for groundtruth_boxes_out in unbatched_tensor_dict_out[
- fields.InputDataFields.groundtruth_boxes]:
- self.assertAllEqual(groundtruth_boxes_out.shape, [3, 4])
- for groundtruth_classes_out in unbatched_tensor_dict_out[
- fields.InputDataFields.groundtruth_classes]:
- self.assertAllEqual(groundtruth_classes_out.shape, [3, 6])
- for groundtruth_weights_out in unbatched_tensor_dict_out[
- fields.InputDataFields.groundtruth_weights]:
- self.assertAllEqual(groundtruth_weights_out.shape, [3])
-
-
- if __name__ == '__main__':
- tf.test.main()
|