|
|
- syntax = "proto2";
-
- package object_detection.protos;
-
- import "object_detection/protos/anchor_generator.proto";
- import "object_detection/protos/box_predictor.proto";
- import "object_detection/protos/hyperparams.proto";
- import "object_detection/protos/image_resizer.proto";
- import "object_detection/protos/losses.proto";
- import "object_detection/protos/post_processing.proto";
-
- // Configuration for Faster R-CNN models.
- // See meta_architectures/faster_rcnn_meta_arch.py and models/model_builder.py
- //
- // Naming conventions:
- // Faster R-CNN models have two stages: a first stage region proposal network
- // (or RPN) and a second stage box classifier. We thus use the prefixes
- // `first_stage_` and `second_stage_` to indicate the stage to which each
- // parameter pertains when relevant.
- message FasterRcnn {
-
- // Whether to construct only the Region Proposal Network (RPN).
- optional int32 number_of_stages = 1 [default=2];
-
- // Number of classes to predict.
- optional int32 num_classes = 3;
-
- // Image resizer for preprocessing the input image.
- optional ImageResizer image_resizer = 4;
-
- // Feature extractor config.
- optional FasterRcnnFeatureExtractor feature_extractor = 5;
-
-
- // (First stage) region proposal network (RPN) parameters.
-
- // Anchor generator to compute RPN anchors.
- optional AnchorGenerator first_stage_anchor_generator = 6;
-
- // Atrous rate for the convolution op applied to the
- // `first_stage_features_to_crop` tensor to obtain box predictions.
- optional int32 first_stage_atrous_rate = 7 [default=1];
-
- // Hyperparameters for the convolutional RPN box predictor.
- optional Hyperparams first_stage_box_predictor_conv_hyperparams = 8;
-
- // Kernel size to use for the convolution op just prior to RPN box
- // predictions.
- optional int32 first_stage_box_predictor_kernel_size = 9 [default=3];
-
- // Output depth for the convolution op just prior to RPN box predictions.
- optional int32 first_stage_box_predictor_depth = 10 [default=512];
-
- // The batch size to use for computing the first stage objectness and
- // location losses.
- optional int32 first_stage_minibatch_size = 11 [default=256];
-
- // Fraction of positive examples per image for the RPN.
- optional float first_stage_positive_balance_fraction = 12 [default=0.5];
-
- // Non max suppression score threshold applied to first stage RPN proposals.
- optional float first_stage_nms_score_threshold = 13 [default=0.0];
-
- // Non max suppression IOU threshold applied to first stage RPN proposals.
- optional float first_stage_nms_iou_threshold = 14 [default=0.7];
-
- // Maximum number of RPN proposals retained after first stage postprocessing.
- optional int32 first_stage_max_proposals = 15 [default=300];
-
- // First stage RPN localization loss weight.
- optional float first_stage_localization_loss_weight = 16 [default=1.0];
-
- // First stage RPN objectness loss weight.
- optional float first_stage_objectness_loss_weight = 17 [default=1.0];
-
-
- // Per-region cropping parameters.
- // Note that if a R-FCN model is constructed the per region cropping
- // parameters below are ignored.
-
- // Output size (width and height are set to be the same) of the initial
- // bilinear interpolation based cropping during ROI pooling.
- optional int32 initial_crop_size = 18;
-
- // Kernel size of the max pool op on the cropped feature map during
- // ROI pooling.
- optional int32 maxpool_kernel_size = 19;
-
- // Stride of the max pool op on the cropped feature map during ROI pooling.
- optional int32 maxpool_stride = 20;
-
-
- // (Second stage) box classifier parameters
-
- // Hyperparameters for the second stage box predictor. If box predictor type
- // is set to rfcn_box_predictor, a R-FCN model is constructed, otherwise a
- // Faster R-CNN model is constructed.
- optional BoxPredictor second_stage_box_predictor = 21;
-
- // The batch size per image used for computing the classification and refined
- // location loss of the box classifier.
- // Note that this field is ignored if `hard_example_miner` is configured.
- optional int32 second_stage_batch_size = 22 [default=64];
-
- // Fraction of positive examples to use per image for the box classifier.
- optional float second_stage_balance_fraction = 23 [default=0.25];
-
- // Post processing to apply on the second stage box classifier predictions.
- // Note: the `score_converter` provided to the FasterRCNNMetaArch constructor
- // is taken from this `second_stage_post_processing` proto.
- optional PostProcessing second_stage_post_processing = 24;
-
- // Second stage refined localization loss weight.
- optional float second_stage_localization_loss_weight = 25 [default=1.0];
-
- // Second stage classification loss weight
- optional float second_stage_classification_loss_weight = 26 [default=1.0];
-
- // Second stage instance mask loss weight. Note that this is only applicable
- // when `MaskRCNNBoxPredictor` is selected for second stage and configured to
- // predict instance masks.
- optional float second_stage_mask_prediction_loss_weight = 27 [default=1.0];
-
- // If not left to default, applies hard example mining only to classification
- // and localization loss..
- optional HardExampleMiner hard_example_miner = 28;
-
- // Loss for second stage box classifers, supports Softmax and Sigmoid.
- // Note that score converter must be consistent with loss type.
- // When there are multiple labels assigned to the same boxes, recommend
- // to use sigmoid loss and enable merge_multiple_label_boxes.
- // If not specified, Softmax loss is used as default.
- optional ClassificationLoss second_stage_classification_loss = 29;
-
- // Whether to update batch_norm inplace during training. This is required
- // for batch norm to work correctly on TPUs. When this is false, user must add
- // a control dependency on tf.GraphKeys.UPDATE_OPS for train/loss op in order
- // to update the batch norm moving average parameters.
- optional bool inplace_batchnorm_update = 30 [default = false];
-
- // Force the use of matrix multiplication based crop and resize instead of
- // standard tf.image.crop_and_resize while computing second stage input
- // feature maps.
- optional bool use_matmul_crop_and_resize = 31 [default = false];
-
- // Normally, anchors generated for a given image size are pruned during
- // training if they lie outside the image window. Setting this option to true,
- // clips the anchors to be within the image instead of pruning.
- optional bool clip_anchors_to_image = 32 [default = false];
-
- // After peforming matching between anchors and targets, in order to pull out
- // targets for training Faster R-CNN meta architecture we perform a gather
- // operation. This options specifies whether to use an alternate
- // implementation of tf.gather that is faster on TPUs.
- optional bool use_matmul_gather_in_matcher = 33 [default = false];
-
- // Whether to use the balanced positive negative sampler implementation with
- // static shape guarantees.
- optional bool use_static_balanced_label_sampler = 34 [default = false];
-
- // If True, uses implementation of ops with static shape guarantees.
- optional bool use_static_shapes = 35 [default = false];
-
- // Whether the masks present in groundtruth should be resized in the model to
- // match the image size.
- optional bool resize_masks = 36 [default = true];
-
- // If True, uses implementation of ops with static shape guarantees when
- // running evaluation (specifically not is_training if False).
- optional bool use_static_shapes_for_eval = 37 [default = false];
- }
-
-
- message FasterRcnnFeatureExtractor {
- // Type of Faster R-CNN model (e.g., 'faster_rcnn_resnet101';
- // See builders/model_builder.py for expected types).
- optional string type = 1;
-
- // Output stride of extracted RPN feature map.
- optional int32 first_stage_features_stride = 2 [default=16];
-
- // Whether to update batch norm parameters during training or not.
- // When training with a relative large batch size (e.g. 8), it could be
- // desirable to enable batch norm update.
- optional bool batch_norm_trainable = 3 [default=false];
- }
|