|
|
- # R-FCN with Resnet-101 (v1), configured for Oxford-IIIT Pets Dataset.
- # Users should configure the fine_tune_checkpoint field in the train config as
- # well as the label_map_path and input_path fields in the train_input_reader and
- # eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
- # should be configured.
-
- model {
- faster_rcnn {
- num_classes: 37
- image_resizer {
- keep_aspect_ratio_resizer {
- min_dimension: 600
- max_dimension: 1024
- }
- }
- feature_extractor {
- type: 'faster_rcnn_resnet101'
- first_stage_features_stride: 16
- }
- first_stage_anchor_generator {
- grid_anchor_generator {
- scales: [0.25, 0.5, 1.0, 2.0]
- aspect_ratios: [0.5, 1.0, 2.0]
- height_stride: 16
- width_stride: 16
- }
- }
- first_stage_box_predictor_conv_hyperparams {
- op: CONV
- regularizer {
- l2_regularizer {
- weight: 0.0
- }
- }
- initializer {
- truncated_normal_initializer {
- stddev: 0.01
- }
- }
- }
- first_stage_nms_score_threshold: 0.0
- first_stage_nms_iou_threshold: 0.7
- first_stage_max_proposals: 300
- first_stage_localization_loss_weight: 2.0
- first_stage_objectness_loss_weight: 1.0
- second_stage_box_predictor {
- rfcn_box_predictor {
- conv_hyperparams {
- op: CONV
- regularizer {
- l2_regularizer {
- weight: 0.0
- }
- }
- initializer {
- truncated_normal_initializer {
- stddev: 0.01
- }
- }
- }
- crop_height: 18
- crop_width: 18
- num_spatial_bins_height: 3
- num_spatial_bins_width: 3
- }
- }
- second_stage_post_processing {
- batch_non_max_suppression {
- score_threshold: 0.0
- iou_threshold: 0.6
- max_detections_per_class: 100
- max_total_detections: 300
- }
- score_converter: SOFTMAX
- }
- second_stage_localization_loss_weight: 2.0
- second_stage_classification_loss_weight: 1.0
- }
- }
-
- train_config: {
- batch_size: 1
- optimizer {
- momentum_optimizer: {
- learning_rate: {
- manual_step_learning_rate {
- initial_learning_rate: 0.0003
- schedule {
- step: 900000
- learning_rate: .00003
- }
- schedule {
- step: 1200000
- learning_rate: .000003
- }
- }
- }
- momentum_optimizer_value: 0.9
- }
- use_moving_average: false
- }
- gradient_clipping_by_norm: 10.0
- fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt"
- from_detection_checkpoint: true
- load_all_detection_checkpoint_vars: true
- # Note: The below line limits the training process to 200K steps, which we
- # empirically found to be sufficient enough to train the pets dataset. This
- # effectively bypasses the learning rate schedule (the learning rate will
- # never decay). Remove the below line to train indefinitely.
- num_steps: 200000
- data_augmentation_options {
- random_horizontal_flip {
- }
- }
- }
-
- train_input_reader: {
- tf_record_input_reader {
- input_path: "PATH_TO_BE_CONFIGURED/pet_faces_train.record-?????-of-00010"
- }
- label_map_path: "PATH_TO_BE_CONFIGURED/pet_label_map.pbtxt"
- }
-
- eval_config: {
- metrics_set: "coco_detection_metrics"
- num_examples: 1101
- }
-
- eval_input_reader: {
- tf_record_input_reader {
- input_path: "PATH_TO_BE_CONFIGURED/pet_faces_val.record-?????-of-00010"
- }
- label_map_path: "PATH_TO_BE_CONFIGURED/pet_label_map.pbtxt"
- shuffle: false
- num_readers: 1
- }
|