|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Evaluates Visual Relations Detection(VRD) result evaluation on an image.
-
- Annotate each VRD result as true positives or false positive according to
- a predefined IOU ratio. Multi-class detection is supported by default.
- Based on the settings, per image evaluation is performed either on phrase
- detection subtask or on relation detection subtask.
- """
- import numpy as np
-
- from object_detection.utils import np_box_list
- from object_detection.utils import np_box_list_ops
-
-
- class PerImageVRDEvaluation(object):
- """Evaluate vrd result of a single image."""
-
- def __init__(self, matching_iou_threshold=0.5):
- """Initialized PerImageVRDEvaluation by evaluation parameters.
-
- Args:
- matching_iou_threshold: A ratio of area intersection to union, which is
- the threshold to consider whether a detection is true positive or not;
- in phrase detection subtask.
- """
- self.matching_iou_threshold = matching_iou_threshold
-
- def compute_detection_tp_fp(self, detected_box_tuples, detected_scores,
- detected_class_tuples, groundtruth_box_tuples,
- groundtruth_class_tuples):
- """Evaluates VRD as being tp, fp from a single image.
-
- Args:
- detected_box_tuples: A numpy array of structures with shape [N,],
- representing N tuples, each tuple containing the same number of named
- bounding boxes.
- Each box is of the format [y_min, x_min, y_max, x_max].
- detected_scores: A float numpy array of shape [N,], representing
- the confidence scores of the detected N object instances.
- detected_class_tuples: A numpy array of structures shape [N,],
- representing the class labels of the corresponding bounding boxes and
- possibly additional classes.
- groundtruth_box_tuples: A float numpy array of structures with the shape
- [M,], representing M tuples, each tuple containing the same number
- of named bounding boxes.
- Each box is of the format [y_min, x_min, y_max, x_max].
- groundtruth_class_tuples: A numpy array of structures shape [M,],
- representing the class labels of the corresponding bounding boxes and
- possibly additional classes.
-
- Returns:
- scores: A single numpy array with shape [N,], representing N scores
- detected with object class, sorted in descentent order.
- tp_fp_labels: A single boolean numpy array of shape [N,], representing N
- True/False positive label, one label per tuple. The labels are sorted
- so that the order of the labels matches the order of the scores.
- result_mapping: A numpy array with shape [N,] with original index of each
- entry.
- """
-
- scores, tp_fp_labels, result_mapping = self._compute_tp_fp(
- detected_box_tuples=detected_box_tuples,
- detected_scores=detected_scores,
- detected_class_tuples=detected_class_tuples,
- groundtruth_box_tuples=groundtruth_box_tuples,
- groundtruth_class_tuples=groundtruth_class_tuples)
-
- return scores, tp_fp_labels, result_mapping
-
- def _compute_tp_fp(self, detected_box_tuples, detected_scores,
- detected_class_tuples, groundtruth_box_tuples,
- groundtruth_class_tuples):
- """Labels as true/false positives detection tuples across all classes.
-
- Args:
- detected_box_tuples: A numpy array of structures with shape [N,],
- representing N tuples, each tuple containing the same number of named
- bounding boxes.
- Each box is of the format [y_min, x_min, y_max, x_max]
- detected_scores: A float numpy array of shape [N,], representing
- the confidence scores of the detected N object instances.
- detected_class_tuples: A numpy array of structures shape [N,],
- representing the class labels of the corresponding bounding boxes and
- possibly additional classes.
- groundtruth_box_tuples: A float numpy array of structures with the shape
- [M,], representing M tuples, each tuple containing the same number
- of named bounding boxes.
- Each box is of the format [y_min, x_min, y_max, x_max]
- groundtruth_class_tuples: A numpy array of structures shape [M,],
- representing the class labels of the corresponding bounding boxes and
- possibly additional classes.
-
- Returns:
- scores: A single numpy array with shape [N,], representing N scores
- detected with object class, sorted in descentent order.
- tp_fp_labels: A single boolean numpy array of shape [N,], representing N
- True/False positive label, one label per tuple. The labels are sorted
- so that the order of the labels matches the order of the scores.
- result_mapping: A numpy array with shape [N,] with original index of each
- entry.
- """
- unique_gt_tuples = np.unique(
- np.concatenate((groundtruth_class_tuples, detected_class_tuples)))
- result_scores = []
- result_tp_fp_labels = []
- result_mapping = []
-
- for unique_tuple in unique_gt_tuples:
- detections_selector = (detected_class_tuples == unique_tuple)
- gt_selector = (groundtruth_class_tuples == unique_tuple)
-
- selector_mapping = np.where(detections_selector)[0]
-
- detection_scores_per_tuple = detected_scores[detections_selector]
- detection_box_per_tuple = detected_box_tuples[detections_selector]
-
- sorted_indices = np.argsort(detection_scores_per_tuple)
- sorted_indices = sorted_indices[::-1]
-
- tp_fp_labels = self._compute_tp_fp_for_single_class(
- detected_box_tuples=detection_box_per_tuple[sorted_indices],
- groundtruth_box_tuples=groundtruth_box_tuples[gt_selector])
- result_scores.append(detection_scores_per_tuple[sorted_indices])
- result_tp_fp_labels.append(tp_fp_labels)
- result_mapping.append(selector_mapping[sorted_indices])
-
- if result_scores:
- result_scores = np.concatenate(result_scores)
- result_tp_fp_labels = np.concatenate(result_tp_fp_labels)
- result_mapping = np.concatenate(result_mapping)
- else:
- result_scores = np.array([], dtype=float)
- result_tp_fp_labels = np.array([], dtype=bool)
- result_mapping = np.array([], dtype=int)
-
- sorted_indices = np.argsort(result_scores)
- sorted_indices = sorted_indices[::-1]
-
- return result_scores[sorted_indices], result_tp_fp_labels[
- sorted_indices], result_mapping[sorted_indices]
-
- def _get_overlaps_and_scores_relation_tuples(self, detected_box_tuples,
- groundtruth_box_tuples):
- """Computes overlaps and scores between detected and groundtruth tuples.
-
- Both detections and groundtruth boxes have the same class tuples.
-
- Args:
- detected_box_tuples: A numpy array of structures with shape [N,],
- representing N tuples, each tuple containing the same number of named
- bounding boxes.
- Each box is of the format [y_min, x_min, y_max, x_max]
- groundtruth_box_tuples: A float numpy array of structures with the shape
- [M,], representing M tuples, each tuple containing the same number
- of named bounding boxes.
- Each box is of the format [y_min, x_min, y_max, x_max]
-
- Returns:
- result_iou: A float numpy array of size
- [num_detected_tuples, num_gt_box_tuples].
- """
-
- result_iou = np.ones(
- (detected_box_tuples.shape[0], groundtruth_box_tuples.shape[0]),
- dtype=float)
- for field in detected_box_tuples.dtype.fields:
- detected_boxlist_field = np_box_list.BoxList(detected_box_tuples[field])
- gt_boxlist_field = np_box_list.BoxList(groundtruth_box_tuples[field])
- iou_field = np_box_list_ops.iou(detected_boxlist_field, gt_boxlist_field)
- result_iou = np.minimum(iou_field, result_iou)
- return result_iou
-
- def _compute_tp_fp_for_single_class(self, detected_box_tuples,
- groundtruth_box_tuples):
- """Labels boxes detected with the same class from the same image as tp/fp.
-
- Detection boxes are expected to be already sorted by score.
- Args:
- detected_box_tuples: A numpy array of structures with shape [N,],
- representing N tuples, each tuple containing the same number of named
- bounding boxes.
- Each box is of the format [y_min, x_min, y_max, x_max]
- groundtruth_box_tuples: A float numpy array of structures with the shape
- [M,], representing M tuples, each tuple containing the same number
- of named bounding boxes.
- Each box is of the format [y_min, x_min, y_max, x_max]
-
- Returns:
- tp_fp_labels: a boolean numpy array indicating whether a detection is a
- true positive.
- """
- if detected_box_tuples.size == 0:
- return np.array([], dtype=bool)
-
- min_iou = self._get_overlaps_and_scores_relation_tuples(
- detected_box_tuples, groundtruth_box_tuples)
-
- num_detected_tuples = detected_box_tuples.shape[0]
- tp_fp_labels = np.zeros(num_detected_tuples, dtype=bool)
-
- if min_iou.shape[1] > 0:
- max_overlap_gt_ids = np.argmax(min_iou, axis=1)
- is_gt_tuple_detected = np.zeros(min_iou.shape[1], dtype=bool)
- for i in range(num_detected_tuples):
- gt_id = max_overlap_gt_ids[i]
- if min_iou[i, gt_id] >= self.matching_iou_threshold:
- if not is_gt_tuple_detected[gt_id]:
- tp_fp_labels[i] = True
- is_gt_tuple_detected[gt_id] = True
-
- return tp_fp_labels
|