|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Tests for object_detection.utils.config_util."""
-
- import os
-
- import tensorflow as tf
-
- from google.protobuf import text_format
-
- from object_detection.protos import eval_pb2
- from object_detection.protos import image_resizer_pb2
- from object_detection.protos import input_reader_pb2
- from object_detection.protos import model_pb2
- from object_detection.protos import pipeline_pb2
- from object_detection.protos import train_pb2
- from object_detection.utils import config_util
-
-
- def _write_config(config, config_path):
- """Writes a config object to disk."""
- config_text = text_format.MessageToString(config)
- with tf.gfile.Open(config_path, "wb") as f:
- f.write(config_text)
-
-
- def _update_optimizer_with_constant_learning_rate(optimizer, learning_rate):
- """Adds a new constant learning rate."""
- constant_lr = optimizer.learning_rate.constant_learning_rate
- constant_lr.learning_rate = learning_rate
-
-
- def _update_optimizer_with_exponential_decay_learning_rate(
- optimizer, learning_rate):
- """Adds a new exponential decay learning rate."""
- exponential_lr = optimizer.learning_rate.exponential_decay_learning_rate
- exponential_lr.initial_learning_rate = learning_rate
-
-
- def _update_optimizer_with_manual_step_learning_rate(
- optimizer, initial_learning_rate, learning_rate_scaling):
- """Adds a learning rate schedule."""
- manual_lr = optimizer.learning_rate.manual_step_learning_rate
- manual_lr.initial_learning_rate = initial_learning_rate
- for i in range(3):
- schedule = manual_lr.schedule.add()
- schedule.learning_rate = initial_learning_rate * learning_rate_scaling**i
-
-
- def _update_optimizer_with_cosine_decay_learning_rate(
- optimizer, learning_rate, warmup_learning_rate):
- """Adds a new cosine decay learning rate."""
- cosine_lr = optimizer.learning_rate.cosine_decay_learning_rate
- cosine_lr.learning_rate_base = learning_rate
- cosine_lr.warmup_learning_rate = warmup_learning_rate
-
-
- class ConfigUtilTest(tf.test.TestCase):
-
- def _create_and_load_test_configs(self, pipeline_config):
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
- _write_config(pipeline_config, pipeline_config_path)
- return config_util.get_configs_from_pipeline_file(pipeline_config_path)
-
- def test_get_configs_from_pipeline_file(self):
- """Test that proto configs can be read from pipeline config file."""
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
-
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.model.faster_rcnn.num_classes = 10
- pipeline_config.train_config.batch_size = 32
- pipeline_config.train_input_reader.label_map_path = "path/to/label_map"
- pipeline_config.eval_config.num_examples = 20
- pipeline_config.eval_input_reader.add().queue_capacity = 100
-
- _write_config(pipeline_config, pipeline_config_path)
-
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- self.assertProtoEquals(pipeline_config.model, configs["model"])
- self.assertProtoEquals(pipeline_config.train_config,
- configs["train_config"])
- self.assertProtoEquals(pipeline_config.train_input_reader,
- configs["train_input_config"])
- self.assertProtoEquals(pipeline_config.eval_config,
- configs["eval_config"])
- self.assertProtoEquals(pipeline_config.eval_input_reader,
- configs["eval_input_configs"])
-
- def test_create_configs_from_pipeline_proto(self):
- """Tests creating configs dictionary from pipeline proto."""
-
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.model.faster_rcnn.num_classes = 10
- pipeline_config.train_config.batch_size = 32
- pipeline_config.train_input_reader.label_map_path = "path/to/label_map"
- pipeline_config.eval_config.num_examples = 20
- pipeline_config.eval_input_reader.add().queue_capacity = 100
-
- configs = config_util.create_configs_from_pipeline_proto(pipeline_config)
- self.assertProtoEquals(pipeline_config.model, configs["model"])
- self.assertProtoEquals(pipeline_config.train_config,
- configs["train_config"])
- self.assertProtoEquals(pipeline_config.train_input_reader,
- configs["train_input_config"])
- self.assertProtoEquals(pipeline_config.eval_config, configs["eval_config"])
- self.assertProtoEquals(pipeline_config.eval_input_reader,
- configs["eval_input_configs"])
-
- def test_create_pipeline_proto_from_configs(self):
- """Tests that proto can be reconstructed from configs dictionary."""
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
-
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.model.faster_rcnn.num_classes = 10
- pipeline_config.train_config.batch_size = 32
- pipeline_config.train_input_reader.label_map_path = "path/to/label_map"
- pipeline_config.eval_config.num_examples = 20
- pipeline_config.eval_input_reader.add().queue_capacity = 100
- _write_config(pipeline_config, pipeline_config_path)
-
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- pipeline_config_reconstructed = (
- config_util.create_pipeline_proto_from_configs(configs))
- self.assertEqual(pipeline_config, pipeline_config_reconstructed)
-
- def test_save_pipeline_config(self):
- """Tests that the pipeline config is properly saved to disk."""
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.model.faster_rcnn.num_classes = 10
- pipeline_config.train_config.batch_size = 32
- pipeline_config.train_input_reader.label_map_path = "path/to/label_map"
- pipeline_config.eval_config.num_examples = 20
- pipeline_config.eval_input_reader.add().queue_capacity = 100
-
- config_util.save_pipeline_config(pipeline_config, self.get_temp_dir())
- configs = config_util.get_configs_from_pipeline_file(
- os.path.join(self.get_temp_dir(), "pipeline.config"))
- pipeline_config_reconstructed = (
- config_util.create_pipeline_proto_from_configs(configs))
-
- self.assertEqual(pipeline_config, pipeline_config_reconstructed)
-
- def test_get_configs_from_multiple_files(self):
- """Tests that proto configs can be read from multiple files."""
- temp_dir = self.get_temp_dir()
-
- # Write model config file.
- model_config_path = os.path.join(temp_dir, "model.config")
- model = model_pb2.DetectionModel()
- model.faster_rcnn.num_classes = 10
- _write_config(model, model_config_path)
-
- # Write train config file.
- train_config_path = os.path.join(temp_dir, "train.config")
- train_config = train_config = train_pb2.TrainConfig()
- train_config.batch_size = 32
- _write_config(train_config, train_config_path)
-
- # Write train input config file.
- train_input_config_path = os.path.join(temp_dir, "train_input.config")
- train_input_config = input_reader_pb2.InputReader()
- train_input_config.label_map_path = "path/to/label_map"
- _write_config(train_input_config, train_input_config_path)
-
- # Write eval config file.
- eval_config_path = os.path.join(temp_dir, "eval.config")
- eval_config = eval_pb2.EvalConfig()
- eval_config.num_examples = 20
- _write_config(eval_config, eval_config_path)
-
- # Write eval input config file.
- eval_input_config_path = os.path.join(temp_dir, "eval_input.config")
- eval_input_config = input_reader_pb2.InputReader()
- eval_input_config.label_map_path = "path/to/another/label_map"
- _write_config(eval_input_config, eval_input_config_path)
-
- configs = config_util.get_configs_from_multiple_files(
- model_config_path=model_config_path,
- train_config_path=train_config_path,
- train_input_config_path=train_input_config_path,
- eval_config_path=eval_config_path,
- eval_input_config_path=eval_input_config_path)
- self.assertProtoEquals(model, configs["model"])
- self.assertProtoEquals(train_config, configs["train_config"])
- self.assertProtoEquals(train_input_config,
- configs["train_input_config"])
- self.assertProtoEquals(eval_config, configs["eval_config"])
- self.assertProtoEquals(eval_input_config, configs["eval_input_configs"][0])
-
- def _assertOptimizerWithNewLearningRate(self, optimizer_name):
- """Asserts successful updating of all learning rate schemes."""
- original_learning_rate = 0.7
- learning_rate_scaling = 0.1
- warmup_learning_rate = 0.07
- hparams = tf.contrib.training.HParams(learning_rate=0.15)
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
-
- # Constant learning rate.
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- optimizer = getattr(pipeline_config.train_config.optimizer, optimizer_name)
- _update_optimizer_with_constant_learning_rate(optimizer,
- original_learning_rate)
- _write_config(pipeline_config, pipeline_config_path)
-
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- configs = config_util.merge_external_params_with_configs(configs, hparams)
- optimizer = getattr(configs["train_config"].optimizer, optimizer_name)
- constant_lr = optimizer.learning_rate.constant_learning_rate
- self.assertAlmostEqual(hparams.learning_rate, constant_lr.learning_rate)
-
- # Exponential decay learning rate.
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- optimizer = getattr(pipeline_config.train_config.optimizer, optimizer_name)
- _update_optimizer_with_exponential_decay_learning_rate(
- optimizer, original_learning_rate)
- _write_config(pipeline_config, pipeline_config_path)
-
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- configs = config_util.merge_external_params_with_configs(configs, hparams)
- optimizer = getattr(configs["train_config"].optimizer, optimizer_name)
- exponential_lr = optimizer.learning_rate.exponential_decay_learning_rate
- self.assertAlmostEqual(hparams.learning_rate,
- exponential_lr.initial_learning_rate)
-
- # Manual step learning rate.
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- optimizer = getattr(pipeline_config.train_config.optimizer, optimizer_name)
- _update_optimizer_with_manual_step_learning_rate(
- optimizer, original_learning_rate, learning_rate_scaling)
- _write_config(pipeline_config, pipeline_config_path)
-
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- configs = config_util.merge_external_params_with_configs(configs, hparams)
- optimizer = getattr(configs["train_config"].optimizer, optimizer_name)
- manual_lr = optimizer.learning_rate.manual_step_learning_rate
- self.assertAlmostEqual(hparams.learning_rate,
- manual_lr.initial_learning_rate)
- for i, schedule in enumerate(manual_lr.schedule):
- self.assertAlmostEqual(hparams.learning_rate * learning_rate_scaling**i,
- schedule.learning_rate)
-
- # Cosine decay learning rate.
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- optimizer = getattr(pipeline_config.train_config.optimizer, optimizer_name)
- _update_optimizer_with_cosine_decay_learning_rate(optimizer,
- original_learning_rate,
- warmup_learning_rate)
- _write_config(pipeline_config, pipeline_config_path)
-
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- configs = config_util.merge_external_params_with_configs(configs, hparams)
- optimizer = getattr(configs["train_config"].optimizer, optimizer_name)
- cosine_lr = optimizer.learning_rate.cosine_decay_learning_rate
-
- self.assertAlmostEqual(hparams.learning_rate, cosine_lr.learning_rate_base)
- warmup_scale_factor = warmup_learning_rate / original_learning_rate
- self.assertAlmostEqual(hparams.learning_rate * warmup_scale_factor,
- cosine_lr.warmup_learning_rate)
-
- def testRMSPropWithNewLearingRate(self):
- """Tests new learning rates for RMSProp Optimizer."""
- self._assertOptimizerWithNewLearningRate("rms_prop_optimizer")
-
- def testMomentumOptimizerWithNewLearningRate(self):
- """Tests new learning rates for Momentum Optimizer."""
- self._assertOptimizerWithNewLearningRate("momentum_optimizer")
-
- def testAdamOptimizerWithNewLearningRate(self):
- """Tests new learning rates for Adam Optimizer."""
- self._assertOptimizerWithNewLearningRate("adam_optimizer")
-
- def testGenericConfigOverride(self):
- """Tests generic config overrides for all top-level configs."""
- # Set one parameter for each of the top-level pipeline configs:
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.model.ssd.num_classes = 1
- pipeline_config.train_config.batch_size = 1
- pipeline_config.eval_config.num_visualizations = 1
- pipeline_config.train_input_reader.label_map_path = "/some/path"
- pipeline_config.eval_input_reader.add().label_map_path = "/some/path"
- pipeline_config.graph_rewriter.quantization.weight_bits = 1
-
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
- _write_config(pipeline_config, pipeline_config_path)
-
- # Override each of the parameters:
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- hparams = tf.contrib.training.HParams(
- **{
- "model.ssd.num_classes": 2,
- "train_config.batch_size": 2,
- "train_input_config.label_map_path": "/some/other/path",
- "eval_config.num_visualizations": 2,
- "graph_rewriter_config.quantization.weight_bits": 2
- })
- configs = config_util.merge_external_params_with_configs(configs, hparams)
-
- # Ensure that the parameters have the overridden values:
- self.assertEqual(2, configs["model"].ssd.num_classes)
- self.assertEqual(2, configs["train_config"].batch_size)
- self.assertEqual("/some/other/path",
- configs["train_input_config"].label_map_path)
- self.assertEqual(2, configs["eval_config"].num_visualizations)
- self.assertEqual(2,
- configs["graph_rewriter_config"].quantization.weight_bits)
-
- def testNewBatchSize(self):
- """Tests that batch size is updated appropriately."""
- original_batch_size = 2
- hparams = tf.contrib.training.HParams(batch_size=16)
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
-
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.train_config.batch_size = original_batch_size
- _write_config(pipeline_config, pipeline_config_path)
-
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- configs = config_util.merge_external_params_with_configs(configs, hparams)
- new_batch_size = configs["train_config"].batch_size
- self.assertEqual(16, new_batch_size)
-
- def testNewBatchSizeWithClipping(self):
- """Tests that batch size is clipped to 1 from below."""
- original_batch_size = 2
- hparams = tf.contrib.training.HParams(batch_size=0.5)
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
-
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.train_config.batch_size = original_batch_size
- _write_config(pipeline_config, pipeline_config_path)
-
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- configs = config_util.merge_external_params_with_configs(configs, hparams)
- new_batch_size = configs["train_config"].batch_size
- self.assertEqual(1, new_batch_size) # Clipped to 1.0.
-
- def testOverwriteBatchSizeWithKeyValue(self):
- """Tests that batch size is overwritten based on key/value."""
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.train_config.batch_size = 2
- configs = self._create_and_load_test_configs(pipeline_config)
- hparams = tf.contrib.training.HParams(**{"train_config.batch_size": 10})
- configs = config_util.merge_external_params_with_configs(configs, hparams)
- new_batch_size = configs["train_config"].batch_size
- self.assertEqual(10, new_batch_size)
-
- def testKeyValueOverrideBadKey(self):
- """Tests that overwriting with a bad key causes an exception."""
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- configs = self._create_and_load_test_configs(pipeline_config)
- hparams = tf.contrib.training.HParams(**{"train_config.no_such_field": 10})
- with self.assertRaises(ValueError):
- config_util.merge_external_params_with_configs(configs, hparams)
-
- def testOverwriteBatchSizeWithBadValueType(self):
- """Tests that overwriting with a bad valuye type causes an exception."""
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.train_config.batch_size = 2
- configs = self._create_and_load_test_configs(pipeline_config)
- # Type should be an integer, but we're passing a string "10".
- hparams = tf.contrib.training.HParams(**{"train_config.batch_size": "10"})
- with self.assertRaises(TypeError):
- config_util.merge_external_params_with_configs(configs, hparams)
-
- def testNewMomentumOptimizerValue(self):
- """Tests that new momentum value is updated appropriately."""
- original_momentum_value = 0.4
- hparams = tf.contrib.training.HParams(momentum_optimizer_value=1.1)
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
-
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- optimizer_config = pipeline_config.train_config.optimizer.rms_prop_optimizer
- optimizer_config.momentum_optimizer_value = original_momentum_value
- _write_config(pipeline_config, pipeline_config_path)
-
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- configs = config_util.merge_external_params_with_configs(configs, hparams)
- optimizer_config = configs["train_config"].optimizer.rms_prop_optimizer
- new_momentum_value = optimizer_config.momentum_optimizer_value
- self.assertAlmostEqual(1.0, new_momentum_value) # Clipped to 1.0.
-
- def testNewClassificationLocalizationWeightRatio(self):
- """Tests that the loss weight ratio is updated appropriately."""
- original_localization_weight = 0.1
- original_classification_weight = 0.2
- new_weight_ratio = 5.0
- hparams = tf.contrib.training.HParams(
- classification_localization_weight_ratio=new_weight_ratio)
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
-
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.model.ssd.loss.localization_weight = (
- original_localization_weight)
- pipeline_config.model.ssd.loss.classification_weight = (
- original_classification_weight)
- _write_config(pipeline_config, pipeline_config_path)
-
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- configs = config_util.merge_external_params_with_configs(configs, hparams)
- loss = configs["model"].ssd.loss
- self.assertAlmostEqual(1.0, loss.localization_weight)
- self.assertAlmostEqual(new_weight_ratio, loss.classification_weight)
-
- def testNewFocalLossParameters(self):
- """Tests that the loss weight ratio is updated appropriately."""
- original_alpha = 1.0
- original_gamma = 1.0
- new_alpha = 0.3
- new_gamma = 2.0
- hparams = tf.contrib.training.HParams(
- focal_loss_alpha=new_alpha, focal_loss_gamma=new_gamma)
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
-
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- classification_loss = pipeline_config.model.ssd.loss.classification_loss
- classification_loss.weighted_sigmoid_focal.alpha = original_alpha
- classification_loss.weighted_sigmoid_focal.gamma = original_gamma
- _write_config(pipeline_config, pipeline_config_path)
-
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- configs = config_util.merge_external_params_with_configs(configs, hparams)
- classification_loss = configs["model"].ssd.loss.classification_loss
- self.assertAlmostEqual(new_alpha,
- classification_loss.weighted_sigmoid_focal.alpha)
- self.assertAlmostEqual(new_gamma,
- classification_loss.weighted_sigmoid_focal.gamma)
-
- def testMergingKeywordArguments(self):
- """Tests that keyword arguments get merged as do hyperparameters."""
- original_num_train_steps = 100
- desired_num_train_steps = 10
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
-
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.train_config.num_steps = original_num_train_steps
- _write_config(pipeline_config, pipeline_config_path)
-
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- override_dict = {"train_steps": desired_num_train_steps}
- configs = config_util.merge_external_params_with_configs(
- configs, kwargs_dict=override_dict)
- train_steps = configs["train_config"].num_steps
- self.assertEqual(desired_num_train_steps, train_steps)
-
- def testGetNumberOfClasses(self):
- """Tests that number of classes can be retrieved."""
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.model.faster_rcnn.num_classes = 20
- _write_config(pipeline_config, pipeline_config_path)
-
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- number_of_classes = config_util.get_number_of_classes(configs["model"])
- self.assertEqual(20, number_of_classes)
-
- def testNewTrainInputPath(self):
- """Tests that train input path can be overwritten with single file."""
- original_train_path = ["path/to/data"]
- new_train_path = "another/path/to/data"
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
-
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- reader_config = pipeline_config.train_input_reader.tf_record_input_reader
- reader_config.input_path.extend(original_train_path)
- _write_config(pipeline_config, pipeline_config_path)
-
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- override_dict = {"train_input_path": new_train_path}
- configs = config_util.merge_external_params_with_configs(
- configs, kwargs_dict=override_dict)
- reader_config = configs["train_input_config"].tf_record_input_reader
- final_path = reader_config.input_path
- self.assertEqual([new_train_path], final_path)
-
- def testNewTrainInputPathList(self):
- """Tests that train input path can be overwritten with multiple files."""
- original_train_path = ["path/to/data"]
- new_train_path = ["another/path/to/data", "yet/another/path/to/data"]
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
-
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- reader_config = pipeline_config.train_input_reader.tf_record_input_reader
- reader_config.input_path.extend(original_train_path)
- _write_config(pipeline_config, pipeline_config_path)
-
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- override_dict = {"train_input_path": new_train_path}
- configs = config_util.merge_external_params_with_configs(
- configs, kwargs_dict=override_dict)
- reader_config = configs["train_input_config"].tf_record_input_reader
- final_path = reader_config.input_path
- self.assertEqual(new_train_path, final_path)
-
- def testNewLabelMapPath(self):
- """Tests that label map path can be overwritten in input readers."""
- original_label_map_path = "path/to/original/label_map"
- new_label_map_path = "path//to/new/label_map"
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
-
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- train_input_reader = pipeline_config.train_input_reader
- train_input_reader.label_map_path = original_label_map_path
- eval_input_reader = pipeline_config.eval_input_reader.add()
- eval_input_reader.label_map_path = original_label_map_path
- _write_config(pipeline_config, pipeline_config_path)
-
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- override_dict = {"label_map_path": new_label_map_path}
- configs = config_util.merge_external_params_with_configs(
- configs, kwargs_dict=override_dict)
- self.assertEqual(new_label_map_path,
- configs["train_input_config"].label_map_path)
- for eval_input_config in configs["eval_input_configs"]:
- self.assertEqual(new_label_map_path, eval_input_config.label_map_path)
-
- def testDontOverwriteEmptyLabelMapPath(self):
- """Tests that label map path will not by overwritten with empty string."""
- original_label_map_path = "path/to/original/label_map"
- new_label_map_path = ""
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
-
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- train_input_reader = pipeline_config.train_input_reader
- train_input_reader.label_map_path = original_label_map_path
- eval_input_reader = pipeline_config.eval_input_reader.add()
- eval_input_reader.label_map_path = original_label_map_path
- _write_config(pipeline_config, pipeline_config_path)
-
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- override_dict = {"label_map_path": new_label_map_path}
- configs = config_util.merge_external_params_with_configs(
- configs, kwargs_dict=override_dict)
- self.assertEqual(original_label_map_path,
- configs["train_input_config"].label_map_path)
- self.assertEqual(original_label_map_path,
- configs["eval_input_configs"][0].label_map_path)
-
- def testNewMaskType(self):
- """Tests that mask type can be overwritten in input readers."""
- original_mask_type = input_reader_pb2.NUMERICAL_MASKS
- new_mask_type = input_reader_pb2.PNG_MASKS
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
-
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- train_input_reader = pipeline_config.train_input_reader
- train_input_reader.mask_type = original_mask_type
- eval_input_reader = pipeline_config.eval_input_reader.add()
- eval_input_reader.mask_type = original_mask_type
- _write_config(pipeline_config, pipeline_config_path)
-
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- override_dict = {"mask_type": new_mask_type}
- configs = config_util.merge_external_params_with_configs(
- configs, kwargs_dict=override_dict)
- self.assertEqual(new_mask_type, configs["train_input_config"].mask_type)
- self.assertEqual(new_mask_type, configs["eval_input_configs"][0].mask_type)
-
- def testUseMovingAverageForEval(self):
- use_moving_averages_orig = False
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
-
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.eval_config.use_moving_averages = use_moving_averages_orig
- _write_config(pipeline_config, pipeline_config_path)
-
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- override_dict = {"eval_with_moving_averages": True}
- configs = config_util.merge_external_params_with_configs(
- configs, kwargs_dict=override_dict)
- self.assertEqual(True, configs["eval_config"].use_moving_averages)
-
- def testGetImageResizerConfig(self):
- """Tests that number of classes can be retrieved."""
- model_config = model_pb2.DetectionModel()
- model_config.faster_rcnn.image_resizer.fixed_shape_resizer.height = 100
- model_config.faster_rcnn.image_resizer.fixed_shape_resizer.width = 300
- image_resizer_config = config_util.get_image_resizer_config(model_config)
- self.assertEqual(image_resizer_config.fixed_shape_resizer.height, 100)
- self.assertEqual(image_resizer_config.fixed_shape_resizer.width, 300)
-
- def testGetSpatialImageSizeFromFixedShapeResizerConfig(self):
- image_resizer_config = image_resizer_pb2.ImageResizer()
- image_resizer_config.fixed_shape_resizer.height = 100
- image_resizer_config.fixed_shape_resizer.width = 200
- image_shape = config_util.get_spatial_image_size(image_resizer_config)
- self.assertAllEqual(image_shape, [100, 200])
-
- def testGetSpatialImageSizeFromAspectPreservingResizerConfig(self):
- image_resizer_config = image_resizer_pb2.ImageResizer()
- image_resizer_config.keep_aspect_ratio_resizer.min_dimension = 100
- image_resizer_config.keep_aspect_ratio_resizer.max_dimension = 600
- image_resizer_config.keep_aspect_ratio_resizer.pad_to_max_dimension = True
- image_shape = config_util.get_spatial_image_size(image_resizer_config)
- self.assertAllEqual(image_shape, [600, 600])
-
- def testGetSpatialImageSizeFromAspectPreservingResizerDynamic(self):
- image_resizer_config = image_resizer_pb2.ImageResizer()
- image_resizer_config.keep_aspect_ratio_resizer.min_dimension = 100
- image_resizer_config.keep_aspect_ratio_resizer.max_dimension = 600
- image_shape = config_util.get_spatial_image_size(image_resizer_config)
- self.assertAllEqual(image_shape, [-1, -1])
-
- def testEvalShuffle(self):
- """Tests that `eval_shuffle` keyword arguments are applied correctly."""
- original_shuffle = True
- desired_shuffle = False
-
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.eval_input_reader.add().shuffle = original_shuffle
- _write_config(pipeline_config, pipeline_config_path)
-
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- override_dict = {"eval_shuffle": desired_shuffle}
- configs = config_util.merge_external_params_with_configs(
- configs, kwargs_dict=override_dict)
- self.assertEqual(desired_shuffle, configs["eval_input_configs"][0].shuffle)
-
- def testTrainShuffle(self):
- """Tests that `train_shuffle` keyword arguments are applied correctly."""
- original_shuffle = True
- desired_shuffle = False
-
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.train_input_reader.shuffle = original_shuffle
- _write_config(pipeline_config, pipeline_config_path)
-
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- override_dict = {"train_shuffle": desired_shuffle}
- configs = config_util.merge_external_params_with_configs(
- configs, kwargs_dict=override_dict)
- train_shuffle = configs["train_input_config"].shuffle
- self.assertEqual(desired_shuffle, train_shuffle)
-
- def testOverWriteRetainOriginalImages(self):
- """Tests that `train_shuffle` keyword arguments are applied correctly."""
- original_retain_original_images = True
- desired_retain_original_images = False
-
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.eval_config.retain_original_images = (
- original_retain_original_images)
- _write_config(pipeline_config, pipeline_config_path)
-
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- override_dict = {
- "retain_original_images_in_eval": desired_retain_original_images
- }
- configs = config_util.merge_external_params_with_configs(
- configs, kwargs_dict=override_dict)
- retain_original_images = configs["eval_config"].retain_original_images
- self.assertEqual(desired_retain_original_images, retain_original_images)
-
- def testOverwriteAllEvalSampling(self):
- original_num_eval_examples = 1
- new_num_eval_examples = 10
-
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.eval_input_reader.add().sample_1_of_n_examples = (
- original_num_eval_examples)
- pipeline_config.eval_input_reader.add().sample_1_of_n_examples = (
- original_num_eval_examples)
- _write_config(pipeline_config, pipeline_config_path)
-
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- override_dict = {"sample_1_of_n_eval_examples": new_num_eval_examples}
- configs = config_util.merge_external_params_with_configs(
- configs, kwargs_dict=override_dict)
- for eval_input_config in configs["eval_input_configs"]:
- self.assertEqual(new_num_eval_examples,
- eval_input_config.sample_1_of_n_examples)
-
- def testOverwriteAllEvalNumEpochs(self):
- original_num_epochs = 10
- new_num_epochs = 1
-
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.eval_input_reader.add().num_epochs = original_num_epochs
- pipeline_config.eval_input_reader.add().num_epochs = original_num_epochs
- _write_config(pipeline_config, pipeline_config_path)
-
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- override_dict = {"eval_num_epochs": new_num_epochs}
- configs = config_util.merge_external_params_with_configs(
- configs, kwargs_dict=override_dict)
- for eval_input_config in configs["eval_input_configs"]:
- self.assertEqual(new_num_epochs, eval_input_config.num_epochs)
-
- def testUpdateMaskTypeForAllInputConfigs(self):
- original_mask_type = input_reader_pb2.NUMERICAL_MASKS
- new_mask_type = input_reader_pb2.PNG_MASKS
-
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- train_config = pipeline_config.train_input_reader
- train_config.mask_type = original_mask_type
- eval_1 = pipeline_config.eval_input_reader.add()
- eval_1.mask_type = original_mask_type
- eval_1.name = "eval_1"
- eval_2 = pipeline_config.eval_input_reader.add()
- eval_2.mask_type = original_mask_type
- eval_2.name = "eval_2"
- _write_config(pipeline_config, pipeline_config_path)
-
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- override_dict = {"mask_type": new_mask_type}
- configs = config_util.merge_external_params_with_configs(
- configs, kwargs_dict=override_dict)
-
- self.assertEqual(configs["train_input_config"].mask_type, new_mask_type)
- for eval_input_config in configs["eval_input_configs"]:
- self.assertEqual(eval_input_config.mask_type, new_mask_type)
-
- def testErrorOverwritingMultipleInputConfig(self):
- original_shuffle = False
- new_shuffle = True
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- eval_1 = pipeline_config.eval_input_reader.add()
- eval_1.shuffle = original_shuffle
- eval_1.name = "eval_1"
- eval_2 = pipeline_config.eval_input_reader.add()
- eval_2.shuffle = original_shuffle
- eval_2.name = "eval_2"
- _write_config(pipeline_config, pipeline_config_path)
-
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
- override_dict = {"eval_shuffle": new_shuffle}
- with self.assertRaises(ValueError):
- configs = config_util.merge_external_params_with_configs(
- configs, kwargs_dict=override_dict)
-
- def testCheckAndParseInputConfigKey(self):
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.eval_input_reader.add().name = "eval_1"
- pipeline_config.eval_input_reader.add().name = "eval_2"
- _write_config(pipeline_config, pipeline_config_path)
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
-
- specific_shuffle_update_key = "eval_input_configs:eval_2:shuffle"
- is_valid_input_config_key, key_name, input_name, field_name = (
- config_util.check_and_parse_input_config_key(
- configs, specific_shuffle_update_key))
- self.assertTrue(is_valid_input_config_key)
- self.assertEqual(key_name, "eval_input_configs")
- self.assertEqual(input_name, "eval_2")
- self.assertEqual(field_name, "shuffle")
-
- legacy_shuffle_update_key = "eval_shuffle"
- is_valid_input_config_key, key_name, input_name, field_name = (
- config_util.check_and_parse_input_config_key(configs,
- legacy_shuffle_update_key))
- self.assertTrue(is_valid_input_config_key)
- self.assertEqual(key_name, "eval_input_configs")
- self.assertEqual(input_name, None)
- self.assertEqual(field_name, "shuffle")
-
- non_input_config_update_key = "label_map_path"
- is_valid_input_config_key, key_name, input_name, field_name = (
- config_util.check_and_parse_input_config_key(
- configs, non_input_config_update_key))
- self.assertFalse(is_valid_input_config_key)
- self.assertEqual(key_name, None)
- self.assertEqual(input_name, None)
- self.assertEqual(field_name, "label_map_path")
-
- with self.assertRaisesRegexp(ValueError,
- "Invalid key format when overriding configs."):
- config_util.check_and_parse_input_config_key(
- configs, "train_input_config:shuffle")
-
- with self.assertRaisesRegexp(
- ValueError, "Invalid key_name when overriding input config."):
- config_util.check_and_parse_input_config_key(
- configs, "invalid_key_name:train_name:shuffle")
-
- with self.assertRaisesRegexp(
- ValueError, "Invalid input_name when overriding input config."):
- config_util.check_and_parse_input_config_key(
- configs, "eval_input_configs:unknown_eval_name:shuffle")
-
- with self.assertRaisesRegexp(
- ValueError, "Invalid field_name when overriding input config."):
- config_util.check_and_parse_input_config_key(
- configs, "eval_input_configs:eval_2:unknown_field_name")
-
- def testUpdateInputReaderConfigSuccess(self):
- original_shuffle = False
- new_shuffle = True
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.train_input_reader.shuffle = original_shuffle
- _write_config(pipeline_config, pipeline_config_path)
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
-
- config_util.update_input_reader_config(
- configs,
- key_name="train_input_config",
- input_name=None,
- field_name="shuffle",
- value=new_shuffle)
- self.assertEqual(configs["train_input_config"].shuffle, new_shuffle)
-
- config_util.update_input_reader_config(
- configs,
- key_name="train_input_config",
- input_name=None,
- field_name="shuffle",
- value=new_shuffle)
- self.assertEqual(configs["train_input_config"].shuffle, new_shuffle)
-
- def testUpdateInputReaderConfigErrors(self):
- pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
- pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
- pipeline_config.eval_input_reader.add().name = "same_eval_name"
- pipeline_config.eval_input_reader.add().name = "same_eval_name"
- _write_config(pipeline_config, pipeline_config_path)
- configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
-
- with self.assertRaisesRegexp(ValueError,
- "Duplicate input name found when overriding."):
- config_util.update_input_reader_config(
- configs,
- key_name="eval_input_configs",
- input_name="same_eval_name",
- field_name="shuffle",
- value=False)
-
- with self.assertRaisesRegexp(
- ValueError, "Input name name_not_exist not found when overriding."):
- config_util.update_input_reader_config(
- configs,
- key_name="eval_input_configs",
- input_name="name_not_exist",
- field_name="shuffle",
- value=False)
-
- with self.assertRaisesRegexp(ValueError,
- "Unknown input config overriding."):
- config_util.update_input_reader_config(
- configs,
- key_name="eval_input_configs",
- input_name=None,
- field_name="shuffle",
- value=False)
-
-
- if __name__ == "__main__":
- tf.test.main()
|