|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
-
- """Tests for object_detection.utils.np_box_list_test."""
-
- import numpy as np
- import tensorflow as tf
-
- from object_detection.utils import np_box_list
-
-
- class BoxListTest(tf.test.TestCase):
-
- def test_invalid_box_data(self):
- with self.assertRaises(ValueError):
- np_box_list.BoxList([0, 0, 1, 1])
-
- with self.assertRaises(ValueError):
- np_box_list.BoxList(np.array([[0, 0, 1, 1]], dtype=int))
-
- with self.assertRaises(ValueError):
- np_box_list.BoxList(np.array([0, 1, 1, 3, 4], dtype=float))
-
- with self.assertRaises(ValueError):
- np_box_list.BoxList(np.array([[0, 1, 1, 3], [3, 1, 1, 5]], dtype=float))
-
- def test_has_field_with_existed_field(self):
- boxes = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0],
- [0.0, 0.0, 20.0, 20.0]],
- dtype=float)
- boxlist = np_box_list.BoxList(boxes)
- self.assertTrue(boxlist.has_field('boxes'))
-
- def test_has_field_with_nonexisted_field(self):
- boxes = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0],
- [0.0, 0.0, 20.0, 20.0]],
- dtype=float)
- boxlist = np_box_list.BoxList(boxes)
- self.assertFalse(boxlist.has_field('scores'))
-
- def test_get_field_with_existed_field(self):
- boxes = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0],
- [0.0, 0.0, 20.0, 20.0]],
- dtype=float)
- boxlist = np_box_list.BoxList(boxes)
- self.assertTrue(np.allclose(boxlist.get_field('boxes'), boxes))
-
- def test_get_field_with_nonexited_field(self):
- boxes = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0],
- [0.0, 0.0, 20.0, 20.0]],
- dtype=float)
- boxlist = np_box_list.BoxList(boxes)
- with self.assertRaises(ValueError):
- boxlist.get_field('scores')
-
-
- class AddExtraFieldTest(tf.test.TestCase):
-
- def setUp(self):
- boxes = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0],
- [0.0, 0.0, 20.0, 20.0]],
- dtype=float)
- self.boxlist = np_box_list.BoxList(boxes)
-
- def test_add_already_existed_field(self):
- with self.assertRaises(ValueError):
- self.boxlist.add_field('boxes', np.array([[0, 0, 0, 1, 0]], dtype=float))
-
- def test_add_invalid_field_data(self):
- with self.assertRaises(ValueError):
- self.boxlist.add_field('scores', np.array([0.5, 0.7], dtype=float))
- with self.assertRaises(ValueError):
- self.boxlist.add_field('scores',
- np.array([0.5, 0.7, 0.9, 0.1], dtype=float))
-
- def test_add_single_dimensional_field_data(self):
- boxlist = self.boxlist
- scores = np.array([0.5, 0.7, 0.9], dtype=float)
- boxlist.add_field('scores', scores)
- self.assertTrue(np.allclose(scores, self.boxlist.get_field('scores')))
-
- def test_add_multi_dimensional_field_data(self):
- boxlist = self.boxlist
- labels = np.array([[0, 0, 0, 1, 0], [0, 1, 0, 0, 0], [0, 0, 0, 0, 1]],
- dtype=int)
- boxlist.add_field('labels', labels)
- self.assertTrue(np.allclose(labels, self.boxlist.get_field('labels')))
-
- def test_get_extra_fields(self):
- boxlist = self.boxlist
- self.assertItemsEqual(boxlist.get_extra_fields(), [])
-
- scores = np.array([0.5, 0.7, 0.9], dtype=float)
- boxlist.add_field('scores', scores)
- self.assertItemsEqual(boxlist.get_extra_fields(), ['scores'])
-
- labels = np.array([[0, 0, 0, 1, 0], [0, 1, 0, 0, 0], [0, 0, 0, 0, 1]],
- dtype=int)
- boxlist.add_field('labels', labels)
- self.assertItemsEqual(boxlist.get_extra_fields(), ['scores', 'labels'])
-
- def test_get_coordinates(self):
- y_min, x_min, y_max, x_max = self.boxlist.get_coordinates()
-
- expected_y_min = np.array([3.0, 14.0, 0.0], dtype=float)
- expected_x_min = np.array([4.0, 14.0, 0.0], dtype=float)
- expected_y_max = np.array([6.0, 15.0, 20.0], dtype=float)
- expected_x_max = np.array([8.0, 15.0, 20.0], dtype=float)
-
- self.assertTrue(np.allclose(y_min, expected_y_min))
- self.assertTrue(np.allclose(x_min, expected_x_min))
- self.assertTrue(np.allclose(y_max, expected_y_max))
- self.assertTrue(np.allclose(x_max, expected_x_max))
-
- def test_num_boxes(self):
- boxes = np.array([[0., 0., 100., 100.], [10., 30., 50., 70.]], dtype=float)
- boxlist = np_box_list.BoxList(boxes)
- expected_num_boxes = 2
- self.assertEquals(boxlist.num_boxes(), expected_num_boxes)
-
-
- if __name__ == '__main__':
- tf.test.main()
|