|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
-
- """Tests for object_detection.utils.object_detection_evaluation."""
-
- from absl.testing import parameterized
- import numpy as np
- import tensorflow as tf
- from object_detection import eval_util
- from object_detection.core import standard_fields
- from object_detection.utils import object_detection_evaluation
-
-
- class OpenImagesV2EvaluationTest(tf.test.TestCase):
-
- def test_returns_correct_metric_values(self):
- categories = [{
- 'id': 1,
- 'name': 'cat'
- }, {
- 'id': 2,
- 'name': 'dog'
- }, {
- 'id': 3,
- 'name': 'elephant'
- }]
-
- oiv2_evaluator = object_detection_evaluation.OpenImagesDetectionEvaluator(
- categories)
- image_key1 = 'img1'
- groundtruth_boxes1 = np.array(
- [[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float)
- groundtruth_class_labels1 = np.array([1, 3, 1], dtype=int)
- oiv2_evaluator.add_single_ground_truth_image_info(image_key1, {
- standard_fields.InputDataFields.groundtruth_boxes:
- groundtruth_boxes1,
- standard_fields.InputDataFields.groundtruth_classes:
- groundtruth_class_labels1,
- standard_fields.InputDataFields.groundtruth_group_of:
- np.array([], dtype=bool)
- })
- image_key2 = 'img2'
- groundtruth_boxes2 = np.array(
- [[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float)
- groundtruth_class_labels2 = np.array([1, 1, 3], dtype=int)
- groundtruth_is_group_of_list2 = np.array([False, True, False], dtype=bool)
- oiv2_evaluator.add_single_ground_truth_image_info(image_key2, {
- standard_fields.InputDataFields.groundtruth_boxes:
- groundtruth_boxes2,
- standard_fields.InputDataFields.groundtruth_classes:
- groundtruth_class_labels2,
- standard_fields.InputDataFields.groundtruth_group_of:
- groundtruth_is_group_of_list2
- })
- image_key3 = 'img3'
- groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float)
- groundtruth_class_labels3 = np.array([2], dtype=int)
- oiv2_evaluator.add_single_ground_truth_image_info(image_key3, {
- standard_fields.InputDataFields.groundtruth_boxes:
- groundtruth_boxes3,
- standard_fields.InputDataFields.groundtruth_classes:
- groundtruth_class_labels3
- })
- # Add detections
- image_key = 'img2'
- detected_boxes = np.array(
- [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]],
- dtype=float)
- detected_class_labels = np.array([1, 1, 3], dtype=int)
- detected_scores = np.array([0.7, 0.8, 0.9], dtype=float)
- oiv2_evaluator.add_single_detected_image_info(image_key, {
- standard_fields.DetectionResultFields.detection_boxes:
- detected_boxes,
- standard_fields.DetectionResultFields.detection_scores:
- detected_scores,
- standard_fields.DetectionResultFields.detection_classes:
- detected_class_labels
- })
- metrics = oiv2_evaluator.evaluate()
- self.assertAlmostEqual(
- metrics['OpenImagesV2_PerformanceByCategory/AP@0.5IOU/dog'], 0.0)
- self.assertAlmostEqual(
- metrics['OpenImagesV2_PerformanceByCategory/AP@0.5IOU/elephant'], 0.0)
- self.assertAlmostEqual(
- metrics['OpenImagesV2_PerformanceByCategory/AP@0.5IOU/cat'], 0.16666666)
- self.assertAlmostEqual(metrics['OpenImagesV2_Precision/mAP@0.5IOU'],
- 0.05555555)
- oiv2_evaluator.clear()
- self.assertFalse(oiv2_evaluator._image_ids)
-
-
- class OpenImagesDetectionChallengeEvaluatorTest(tf.test.TestCase):
-
- def test_returns_correct_metric_values(self):
- categories = [{
- 'id': 1,
- 'name': 'cat'
- }, {
- 'id': 2,
- 'name': 'dog'
- }, {
- 'id': 3,
- 'name': 'elephant'
- }]
- oivchallenge_evaluator = (
- object_detection_evaluation.OpenImagesDetectionChallengeEvaluator(
- categories, group_of_weight=0.5))
-
- image_key = 'img1'
- groundtruth_boxes = np.array(
- [[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float)
- groundtruth_class_labels = np.array([1, 3, 1], dtype=int)
- groundtruth_is_group_of_list = np.array([False, False, True], dtype=bool)
- groundtruth_verified_labels = np.array([1, 2, 3], dtype=int)
- oivchallenge_evaluator.add_single_ground_truth_image_info(
- image_key, {
- standard_fields.InputDataFields.groundtruth_boxes:
- groundtruth_boxes,
- standard_fields.InputDataFields.groundtruth_classes:
- groundtruth_class_labels,
- standard_fields.InputDataFields.groundtruth_group_of:
- groundtruth_is_group_of_list,
- standard_fields.InputDataFields.groundtruth_image_classes:
- groundtruth_verified_labels,
- })
- image_key = 'img2'
- groundtruth_boxes = np.array(
- [[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float)
- groundtruth_class_labels = np.array([1, 1, 3], dtype=int)
- groundtruth_is_group_of_list = np.array([False, False, True], dtype=bool)
- oivchallenge_evaluator.add_single_ground_truth_image_info(
- image_key, {
- standard_fields.InputDataFields.groundtruth_boxes:
- groundtruth_boxes,
- standard_fields.InputDataFields.groundtruth_classes:
- groundtruth_class_labels,
- standard_fields.InputDataFields.groundtruth_group_of:
- groundtruth_is_group_of_list
- })
- image_key = 'img3'
- groundtruth_boxes = np.array([[0, 0, 1, 1]], dtype=float)
- groundtruth_class_labels = np.array([2], dtype=int)
- oivchallenge_evaluator.add_single_ground_truth_image_info(
- image_key, {
- standard_fields.InputDataFields.groundtruth_boxes:
- groundtruth_boxes,
- standard_fields.InputDataFields.groundtruth_classes:
- groundtruth_class_labels
- })
- image_key = 'img1'
- detected_boxes = np.array(
- [[10, 10, 11, 11], [100, 100, 120, 120]], dtype=float)
- detected_class_labels = np.array([2, 2], dtype=int)
- detected_scores = np.array([0.7, 0.8], dtype=float)
- oivchallenge_evaluator.add_single_detected_image_info(
- image_key, {
- standard_fields.DetectionResultFields.detection_boxes:
- detected_boxes,
- standard_fields.DetectionResultFields.detection_scores:
- detected_scores,
- standard_fields.DetectionResultFields.detection_classes:
- detected_class_labels
- })
- image_key = 'img2'
- detected_boxes = np.array(
- [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220],
- [10, 10, 11, 11]],
- dtype=float)
- detected_class_labels = np.array([1, 1, 2, 3], dtype=int)
- detected_scores = np.array([0.7, 0.8, 0.5, 0.9], dtype=float)
- oivchallenge_evaluator.add_single_detected_image_info(
- image_key, {
- standard_fields.DetectionResultFields.detection_boxes:
- detected_boxes,
- standard_fields.DetectionResultFields.detection_scores:
- detected_scores,
- standard_fields.DetectionResultFields.detection_classes:
- detected_class_labels
- })
- image_key = 'img3'
- detected_boxes = np.array([[0, 0, 1, 1]], dtype=float)
- detected_class_labels = np.array([2], dtype=int)
- detected_scores = np.array([0.5], dtype=float)
- oivchallenge_evaluator.add_single_detected_image_info(
- image_key, {
- standard_fields.DetectionResultFields.detection_boxes:
- detected_boxes,
- standard_fields.DetectionResultFields.detection_scores:
- detected_scores,
- standard_fields.DetectionResultFields.detection_classes:
- detected_class_labels
- })
- metrics = oivchallenge_evaluator.evaluate()
-
- self.assertAlmostEqual(
- metrics['OpenImagesChallenge2018_PerformanceByCategory/AP@0.5IOU/dog'],
- 0.3333333333)
- self.assertAlmostEqual(
- metrics[
- 'OpenImagesChallenge2018_PerformanceByCategory/AP@0.5IOU/elephant'],
- 0.333333333333)
- self.assertAlmostEqual(
- metrics['OpenImagesChallenge2018_PerformanceByCategory/AP@0.5IOU/cat'],
- 0.142857142857)
- self.assertAlmostEqual(
- metrics['OpenImagesChallenge2018_Precision/mAP@0.5IOU'], 0.269841269)
-
- oivchallenge_evaluator.clear()
- self.assertFalse(oivchallenge_evaluator._image_ids)
-
-
- class PascalEvaluationTest(tf.test.TestCase):
-
- def test_returns_correct_metric_values_on_boxes(self):
- categories = [{'id': 1, 'name': 'cat'},
- {'id': 2, 'name': 'dog'},
- {'id': 3, 'name': 'elephant'}]
- # Add groundtruth
- pascal_evaluator = object_detection_evaluation.PascalDetectionEvaluator(
- categories)
- image_key1 = 'img1'
- groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]],
- dtype=float)
- groundtruth_class_labels1 = np.array([1, 3, 1], dtype=int)
- pascal_evaluator.add_single_ground_truth_image_info(
- image_key1,
- {standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes1,
- standard_fields.InputDataFields.groundtruth_classes:
- groundtruth_class_labels1,
- standard_fields.InputDataFields.groundtruth_difficult:
- np.array([], dtype=bool)})
- image_key2 = 'img2'
- groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510],
- [10, 10, 12, 12]], dtype=float)
- groundtruth_class_labels2 = np.array([1, 1, 3], dtype=int)
- groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool)
- pascal_evaluator.add_single_ground_truth_image_info(
- image_key2,
- {standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes2,
- standard_fields.InputDataFields.groundtruth_classes:
- groundtruth_class_labels2,
- standard_fields.InputDataFields.groundtruth_difficult:
- groundtruth_is_difficult_list2})
- image_key3 = 'img3'
- groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float)
- groundtruth_class_labels3 = np.array([2], dtype=int)
- pascal_evaluator.add_single_ground_truth_image_info(
- image_key3,
- {standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes3,
- standard_fields.InputDataFields.groundtruth_classes:
- groundtruth_class_labels3})
-
- # Add detections
- image_key = 'img2'
- detected_boxes = np.array(
- [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]],
- dtype=float)
- detected_class_labels = np.array([1, 1, 3], dtype=int)
- detected_scores = np.array([0.7, 0.8, 0.9], dtype=float)
- pascal_evaluator.add_single_detected_image_info(
- image_key,
- {standard_fields.DetectionResultFields.detection_boxes: detected_boxes,
- standard_fields.DetectionResultFields.detection_scores:
- detected_scores,
- standard_fields.DetectionResultFields.detection_classes:
- detected_class_labels})
-
- metrics = pascal_evaluator.evaluate()
- self.assertAlmostEqual(
- metrics['PascalBoxes_PerformanceByCategory/AP@0.5IOU/dog'], 0.0)
- self.assertAlmostEqual(
- metrics['PascalBoxes_PerformanceByCategory/AP@0.5IOU/elephant'], 0.0)
- self.assertAlmostEqual(
- metrics['PascalBoxes_PerformanceByCategory/AP@0.5IOU/cat'], 0.16666666)
- self.assertAlmostEqual(metrics['PascalBoxes_Precision/mAP@0.5IOU'],
- 0.05555555)
- pascal_evaluator.clear()
- self.assertFalse(pascal_evaluator._image_ids)
-
- def test_returns_correct_metric_values_on_masks(self):
- categories = [{'id': 1, 'name': 'cat'},
- {'id': 2, 'name': 'dog'},
- {'id': 3, 'name': 'elephant'}]
- # Add groundtruth
- pascal_evaluator = (
- object_detection_evaluation.PascalInstanceSegmentationEvaluator(
- categories))
- image_key1 = 'img1'
- groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]],
- dtype=float)
- groundtruth_class_labels1 = np.array([1, 3, 1], dtype=int)
- groundtruth_masks_1_0 = np.array([[1, 0, 0, 0],
- [1, 0, 0, 0],
- [1, 0, 0, 0]], dtype=np.uint8)
- groundtruth_masks_1_1 = np.array([[0, 0, 1, 0],
- [0, 0, 1, 0],
- [0, 0, 1, 0]], dtype=np.uint8)
- groundtruth_masks_1_2 = np.array([[0, 1, 0, 0],
- [0, 1, 0, 0],
- [0, 1, 0, 0]], dtype=np.uint8)
- groundtruth_masks1 = np.stack(
- [groundtruth_masks_1_0, groundtruth_masks_1_1, groundtruth_masks_1_2],
- axis=0)
-
- pascal_evaluator.add_single_ground_truth_image_info(
- image_key1, {
- standard_fields.InputDataFields.groundtruth_boxes:
- groundtruth_boxes1,
- standard_fields.InputDataFields.groundtruth_instance_masks:
- groundtruth_masks1,
- standard_fields.InputDataFields.groundtruth_classes:
- groundtruth_class_labels1,
- standard_fields.InputDataFields.groundtruth_difficult:
- np.array([], dtype=bool)
- })
- image_key2 = 'img2'
- groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510],
- [10, 10, 12, 12]], dtype=float)
- groundtruth_class_labels2 = np.array([1, 1, 3], dtype=int)
- groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool)
- groundtruth_masks_2_0 = np.array([[1, 1, 1, 1],
- [0, 0, 0, 0],
- [0, 0, 0, 0]], dtype=np.uint8)
- groundtruth_masks_2_1 = np.array([[0, 0, 0, 0],
- [1, 1, 1, 1],
- [0, 0, 0, 0]], dtype=np.uint8)
- groundtruth_masks_2_2 = np.array([[0, 0, 0, 0],
- [0, 0, 0, 0],
- [1, 1, 1, 1]], dtype=np.uint8)
- groundtruth_masks2 = np.stack(
- [groundtruth_masks_2_0, groundtruth_masks_2_1, groundtruth_masks_2_2],
- axis=0)
- pascal_evaluator.add_single_ground_truth_image_info(
- image_key2, {
- standard_fields.InputDataFields.groundtruth_boxes:
- groundtruth_boxes2,
- standard_fields.InputDataFields.groundtruth_instance_masks:
- groundtruth_masks2,
- standard_fields.InputDataFields.groundtruth_classes:
- groundtruth_class_labels2,
- standard_fields.InputDataFields.groundtruth_difficult:
- groundtruth_is_difficult_list2
- })
- image_key3 = 'img3'
- groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float)
- groundtruth_class_labels3 = np.array([2], dtype=int)
- groundtruth_masks_3_0 = np.array([[1, 1, 1, 1],
- [1, 1, 1, 1],
- [1, 1, 1, 1]], dtype=np.uint8)
- groundtruth_masks3 = np.stack([groundtruth_masks_3_0], axis=0)
- pascal_evaluator.add_single_ground_truth_image_info(
- image_key3, {
- standard_fields.InputDataFields.groundtruth_boxes:
- groundtruth_boxes3,
- standard_fields.InputDataFields.groundtruth_instance_masks:
- groundtruth_masks3,
- standard_fields.InputDataFields.groundtruth_classes:
- groundtruth_class_labels3
- })
-
- # Add detections
- image_key = 'img2'
- detected_boxes = np.array(
- [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]],
- dtype=float)
- detected_class_labels = np.array([1, 1, 3], dtype=int)
- detected_scores = np.array([0.7, 0.8, 0.9], dtype=float)
- detected_masks_0 = np.array([[1, 1, 1, 1],
- [0, 0, 1, 0],
- [0, 0, 0, 0]], dtype=np.uint8)
- detected_masks_1 = np.array([[1, 0, 0, 0],
- [1, 1, 0, 0],
- [0, 0, 0, 0]], dtype=np.uint8)
- detected_masks_2 = np.array([[0, 1, 0, 0],
- [0, 1, 1, 0],
- [0, 1, 0, 0]], dtype=np.uint8)
- detected_masks = np.stack(
- [detected_masks_0, detected_masks_1, detected_masks_2], axis=0)
-
- pascal_evaluator.add_single_detected_image_info(
- image_key, {
- standard_fields.DetectionResultFields.detection_boxes:
- detected_boxes,
- standard_fields.DetectionResultFields.detection_masks:
- detected_masks,
- standard_fields.DetectionResultFields.detection_scores:
- detected_scores,
- standard_fields.DetectionResultFields.detection_classes:
- detected_class_labels
- })
-
- metrics = pascal_evaluator.evaluate()
-
- self.assertAlmostEqual(
- metrics['PascalMasks_PerformanceByCategory/AP@0.5IOU/dog'], 0.0)
- self.assertAlmostEqual(
- metrics['PascalMasks_PerformanceByCategory/AP@0.5IOU/elephant'], 0.0)
- self.assertAlmostEqual(
- metrics['PascalMasks_PerformanceByCategory/AP@0.5IOU/cat'], 0.16666666)
- self.assertAlmostEqual(metrics['PascalMasks_Precision/mAP@0.5IOU'],
- 0.05555555)
- pascal_evaluator.clear()
- self.assertFalse(pascal_evaluator._image_ids)
-
- def test_value_error_on_duplicate_images(self):
- categories = [{'id': 1, 'name': 'cat'},
- {'id': 2, 'name': 'dog'},
- {'id': 3, 'name': 'elephant'}]
- # Add groundtruth
- pascal_evaluator = object_detection_evaluation.PascalDetectionEvaluator(
- categories)
- image_key1 = 'img1'
- groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]],
- dtype=float)
- groundtruth_class_labels1 = np.array([1, 3, 1], dtype=int)
- pascal_evaluator.add_single_ground_truth_image_info(
- image_key1,
- {standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes1,
- standard_fields.InputDataFields.groundtruth_classes:
- groundtruth_class_labels1})
- with self.assertRaises(ValueError):
- pascal_evaluator.add_single_ground_truth_image_info(
- image_key1,
- {standard_fields.InputDataFields.groundtruth_boxes:
- groundtruth_boxes1,
- standard_fields.InputDataFields.groundtruth_classes:
- groundtruth_class_labels1})
-
-
- class WeightedPascalEvaluationTest(tf.test.TestCase):
-
- def setUp(self):
- self.categories = [{'id': 1, 'name': 'cat'},
- {'id': 2, 'name': 'dog'},
- {'id': 3, 'name': 'elephant'}]
-
- def create_and_add_common_ground_truth(self):
- # Add groundtruth
- self.wp_eval = (
- object_detection_evaluation.WeightedPascalDetectionEvaluator(
- self.categories))
-
- image_key1 = 'img1'
- groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]],
- dtype=float)
- groundtruth_class_labels1 = np.array([1, 3, 1], dtype=int)
- self.wp_eval.add_single_ground_truth_image_info(
- image_key1,
- {standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes1,
- standard_fields.InputDataFields.groundtruth_classes:
- groundtruth_class_labels1})
- # add 'img2' separately
- image_key3 = 'img3'
- groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float)
- groundtruth_class_labels3 = np.array([2], dtype=int)
- self.wp_eval.add_single_ground_truth_image_info(
- image_key3,
- {standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes3,
- standard_fields.InputDataFields.groundtruth_classes:
- groundtruth_class_labels3})
-
- def add_common_detected(self):
- image_key = 'img2'
- detected_boxes = np.array(
- [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]],
- dtype=float)
- detected_class_labels = np.array([1, 1, 3], dtype=int)
- detected_scores = np.array([0.7, 0.8, 0.9], dtype=float)
- self.wp_eval.add_single_detected_image_info(
- image_key,
- {standard_fields.DetectionResultFields.detection_boxes: detected_boxes,
- standard_fields.DetectionResultFields.detection_scores:
- detected_scores,
- standard_fields.DetectionResultFields.detection_classes:
- detected_class_labels})
-
- def test_returns_correct_metric_values(self):
- self.create_and_add_common_ground_truth()
- image_key2 = 'img2'
- groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510],
- [10, 10, 12, 12]], dtype=float)
- groundtruth_class_labels2 = np.array([1, 1, 3], dtype=int)
- self.wp_eval.add_single_ground_truth_image_info(
- image_key2,
- {standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes2,
- standard_fields.InputDataFields.groundtruth_classes:
- groundtruth_class_labels2
- })
- self.add_common_detected()
-
- metrics = self.wp_eval.evaluate()
- self.assertAlmostEqual(
- metrics[self.wp_eval._metric_prefix +
- 'PerformanceByCategory/AP@0.5IOU/dog'], 0.0)
- self.assertAlmostEqual(
- metrics[self.wp_eval._metric_prefix +
- 'PerformanceByCategory/AP@0.5IOU/elephant'], 0.0)
- self.assertAlmostEqual(
- metrics[self.wp_eval._metric_prefix +
- 'PerformanceByCategory/AP@0.5IOU/cat'], 0.5 / 4)
- self.assertAlmostEqual(metrics[self.wp_eval._metric_prefix +
- 'Precision/mAP@0.5IOU'],
- 1. / (4 + 1 + 2) / 3)
- self.wp_eval.clear()
- self.assertFalse(self.wp_eval._image_ids)
-
- def test_returns_correct_metric_values_with_difficult_list(self):
- self.create_and_add_common_ground_truth()
- image_key2 = 'img2'
- groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510],
- [10, 10, 12, 12]], dtype=float)
- groundtruth_class_labels2 = np.array([1, 1, 3], dtype=int)
- groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool)
- self.wp_eval.add_single_ground_truth_image_info(
- image_key2,
- {standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes2,
- standard_fields.InputDataFields.groundtruth_classes:
- groundtruth_class_labels2,
- standard_fields.InputDataFields.groundtruth_difficult:
- groundtruth_is_difficult_list2
- })
- self.add_common_detected()
-
- metrics = self.wp_eval.evaluate()
- self.assertAlmostEqual(
- metrics[self.wp_eval._metric_prefix +
- 'PerformanceByCategory/AP@0.5IOU/dog'], 0.0)
- self.assertAlmostEqual(
- metrics[self.wp_eval._metric_prefix +
- 'PerformanceByCategory/AP@0.5IOU/elephant'], 0.0)
- self.assertAlmostEqual(
- metrics[self.wp_eval._metric_prefix +
- 'PerformanceByCategory/AP@0.5IOU/cat'], 0.5 / 3)
- self.assertAlmostEqual(metrics[self.wp_eval._metric_prefix +
- 'Precision/mAP@0.5IOU'],
- 1. / (3 + 1 + 2) / 3)
- self.wp_eval.clear()
- self.assertFalse(self.wp_eval._image_ids)
-
- def test_value_error_on_duplicate_images(self):
- # Add groundtruth
- self.wp_eval = (
- object_detection_evaluation.WeightedPascalDetectionEvaluator(
- self.categories))
- image_key1 = 'img1'
- groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]],
- dtype=float)
- groundtruth_class_labels1 = np.array([1, 3, 1], dtype=int)
- self.wp_eval.add_single_ground_truth_image_info(
- image_key1,
- {standard_fields.InputDataFields.groundtruth_boxes: groundtruth_boxes1,
- standard_fields.InputDataFields.groundtruth_classes:
- groundtruth_class_labels1})
- with self.assertRaises(ValueError):
- self.wp_eval.add_single_ground_truth_image_info(
- image_key1,
- {standard_fields.InputDataFields.groundtruth_boxes:
- groundtruth_boxes1,
- standard_fields.InputDataFields.groundtruth_classes:
- groundtruth_class_labels1})
-
-
- class ObjectDetectionEvaluationTest(tf.test.TestCase):
-
- def setUp(self):
- num_groundtruth_classes = 3
- self.od_eval = object_detection_evaluation.ObjectDetectionEvaluation(
- num_groundtruth_classes)
-
- image_key1 = 'img1'
- groundtruth_boxes1 = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]],
- dtype=float)
- groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int)
- self.od_eval.add_single_ground_truth_image_info(
- image_key1, groundtruth_boxes1, groundtruth_class_labels1)
- image_key2 = 'img2'
- groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510],
- [10, 10, 12, 12]], dtype=float)
- groundtruth_class_labels2 = np.array([0, 0, 2], dtype=int)
- groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool)
- groundtruth_is_group_of_list2 = np.array([False, False, True], dtype=bool)
- self.od_eval.add_single_ground_truth_image_info(
- image_key2, groundtruth_boxes2, groundtruth_class_labels2,
- groundtruth_is_difficult_list2, groundtruth_is_group_of_list2)
-
- image_key3 = 'img3'
- groundtruth_boxes3 = np.array([[0, 0, 1, 1]], dtype=float)
- groundtruth_class_labels3 = np.array([1], dtype=int)
- self.od_eval.add_single_ground_truth_image_info(
- image_key3, groundtruth_boxes3, groundtruth_class_labels3)
-
- image_key = 'img2'
- detected_boxes = np.array(
- [[10, 10, 11, 11], [100, 100, 120, 120], [100, 100, 220, 220]],
- dtype=float)
- detected_class_labels = np.array([0, 0, 2], dtype=int)
- detected_scores = np.array([0.7, 0.8, 0.9], dtype=float)
- self.od_eval.add_single_detected_image_info(
- image_key, detected_boxes, detected_scores, detected_class_labels)
-
- def test_value_error_on_zero_classes(self):
- with self.assertRaises(ValueError):
- object_detection_evaluation.ObjectDetectionEvaluation(
- num_groundtruth_classes=0)
-
- def test_add_single_ground_truth_image_info(self):
- expected_num_gt_instances_per_class = np.array([3, 1, 1], dtype=int)
- expected_num_gt_imgs_per_class = np.array([2, 1, 2], dtype=int)
- self.assertTrue(np.array_equal(expected_num_gt_instances_per_class,
- self.od_eval.num_gt_instances_per_class))
- self.assertTrue(np.array_equal(expected_num_gt_imgs_per_class,
- self.od_eval.num_gt_imgs_per_class))
- groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510],
- [10, 10, 12, 12]], dtype=float)
- self.assertTrue(np.allclose(self.od_eval.groundtruth_boxes['img2'],
- groundtruth_boxes2))
- groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool)
- self.assertTrue(np.allclose(
- self.od_eval.groundtruth_is_difficult_list['img2'],
- groundtruth_is_difficult_list2))
- groundtruth_is_group_of_list2 = np.array([False, False, True], dtype=bool)
- self.assertTrue(
- np.allclose(self.od_eval.groundtruth_is_group_of_list['img2'],
- groundtruth_is_group_of_list2))
-
- groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int)
- self.assertTrue(np.array_equal(self.od_eval.groundtruth_class_labels[
- 'img1'], groundtruth_class_labels1))
-
- def test_add_single_detected_image_info(self):
- expected_scores_per_class = [[np.array([0.8, 0.7], dtype=float)], [],
- [np.array([0.9], dtype=float)]]
- expected_tp_fp_labels_per_class = [[np.array([0, 1], dtype=bool)], [],
- [np.array([0], dtype=bool)]]
- expected_num_images_correctly_detected_per_class = np.array([0, 0, 0],
- dtype=int)
- for i in range(self.od_eval.num_class):
- for j in range(len(expected_scores_per_class[i])):
- self.assertTrue(np.allclose(expected_scores_per_class[i][j],
- self.od_eval.scores_per_class[i][j]))
- self.assertTrue(np.array_equal(expected_tp_fp_labels_per_class[i][
- j], self.od_eval.tp_fp_labels_per_class[i][j]))
- self.assertTrue(np.array_equal(
- expected_num_images_correctly_detected_per_class,
- self.od_eval.num_images_correctly_detected_per_class))
-
- def test_evaluate(self):
- (average_precision_per_class, mean_ap, precisions_per_class,
- recalls_per_class, corloc_per_class,
- mean_corloc) = self.od_eval.evaluate()
- expected_precisions_per_class = [np.array([0, 0.5], dtype=float),
- np.array([], dtype=float),
- np.array([0], dtype=float)]
- expected_recalls_per_class = [
- np.array([0, 1. / 3.], dtype=float), np.array([], dtype=float),
- np.array([0], dtype=float)
- ]
- expected_average_precision_per_class = np.array([1. / 6., 0, 0],
- dtype=float)
- expected_corloc_per_class = np.array([0, np.divide(0, 0), 0], dtype=float)
- expected_mean_ap = 1. / 18
- expected_mean_corloc = 0.0
- for i in range(self.od_eval.num_class):
- self.assertTrue(np.allclose(expected_precisions_per_class[i],
- precisions_per_class[i]))
- self.assertTrue(np.allclose(expected_recalls_per_class[i],
- recalls_per_class[i]))
- self.assertTrue(np.allclose(expected_average_precision_per_class,
- average_precision_per_class))
- self.assertTrue(np.allclose(expected_corloc_per_class, corloc_per_class))
- self.assertAlmostEqual(expected_mean_ap, mean_ap)
- self.assertAlmostEqual(expected_mean_corloc, mean_corloc)
-
-
- class ObjectDetectionEvaluatorTest(tf.test.TestCase, parameterized.TestCase):
-
- def setUp(self):
- self.categories = [{
- 'id': 1,
- 'name': 'person'
- }, {
- 'id': 2,
- 'name': 'dog'
- }, {
- 'id': 3,
- 'name': 'cat'
- }]
- self.od_eval = object_detection_evaluation.ObjectDetectionEvaluator(
- categories=self.categories)
-
- def _make_evaluation_dict(self,
- resized_groundtruth_masks=False,
- batch_size=1,
- max_gt_boxes=None,
- scale_to_absolute=False):
- input_data_fields = standard_fields.InputDataFields
- detection_fields = standard_fields.DetectionResultFields
-
- image = tf.zeros(shape=[batch_size, 20, 20, 3], dtype=tf.uint8)
- if batch_size == 1:
- key = tf.constant('image1')
- else:
- key = tf.constant([str(i) for i in range(batch_size)])
- detection_boxes = tf.concat([
- tf.tile(
- tf.constant([[[0., 0., 1., 1.]]]), multiples=[batch_size - 1, 1, 1
- ]),
- tf.constant([[[0., 0., 0.5, 0.5]]])
- ],
- axis=0)
- detection_scores = tf.concat([
- tf.tile(tf.constant([[0.5]]), multiples=[batch_size - 1, 1]),
- tf.constant([[0.8]])
- ],
- axis=0)
- detection_classes = tf.tile(tf.constant([[0]]), multiples=[batch_size, 1])
- detection_masks = tf.tile(
- tf.ones(shape=[1, 2, 20, 20], dtype=tf.float32),
- multiples=[batch_size, 1, 1, 1])
- groundtruth_boxes = tf.constant([[0., 0., 1., 1.]])
- groundtruth_classes = tf.constant([1])
- groundtruth_instance_masks = tf.ones(shape=[1, 20, 20], dtype=tf.uint8)
- num_detections = tf.ones([batch_size])
- if resized_groundtruth_masks:
- groundtruth_instance_masks = tf.ones(shape=[1, 10, 10], dtype=tf.uint8)
-
- if batch_size > 1:
- groundtruth_boxes = tf.tile(
- tf.expand_dims(groundtruth_boxes, 0), multiples=[batch_size, 1, 1])
- groundtruth_classes = tf.tile(
- tf.expand_dims(groundtruth_classes, 0), multiples=[batch_size, 1])
- groundtruth_instance_masks = tf.tile(
- tf.expand_dims(groundtruth_instance_masks, 0),
- multiples=[batch_size, 1, 1, 1])
-
- detections = {
- detection_fields.detection_boxes: detection_boxes,
- detection_fields.detection_scores: detection_scores,
- detection_fields.detection_classes: detection_classes,
- detection_fields.detection_masks: detection_masks,
- detection_fields.num_detections: num_detections
- }
- groundtruth = {
- input_data_fields.groundtruth_boxes:
- groundtruth_boxes,
- input_data_fields.groundtruth_classes:
- groundtruth_classes,
- input_data_fields.groundtruth_instance_masks:
- groundtruth_instance_masks,
- }
- if batch_size > 1:
- return eval_util.result_dict_for_batched_example(
- image,
- key,
- detections,
- groundtruth,
- scale_to_absolute=scale_to_absolute,
- max_gt_boxes=max_gt_boxes)
- else:
- return eval_util.result_dict_for_single_example(
- image,
- key,
- detections,
- groundtruth,
- scale_to_absolute=scale_to_absolute)
-
- @parameterized.parameters({
- 'batch_size': 1,
- 'expected_map': 0,
- 'max_gt_boxes': None,
- 'scale_to_absolute': True
- }, {
- 'batch_size': 8,
- 'expected_map': 0.765625,
- 'max_gt_boxes': [1],
- 'scale_to_absolute': True
- }, {
- 'batch_size': 1,
- 'expected_map': 0,
- 'max_gt_boxes': None,
- 'scale_to_absolute': False
- }, {
- 'batch_size': 8,
- 'expected_map': 0.765625,
- 'max_gt_boxes': [1],
- 'scale_to_absolute': False
- })
- def test_get_estimator_eval_metric_ops(self,
- batch_size=1,
- expected_map=1,
- max_gt_boxes=None,
- scale_to_absolute=False):
-
- eval_dict = self._make_evaluation_dict(
- batch_size=batch_size,
- max_gt_boxes=max_gt_boxes,
- scale_to_absolute=scale_to_absolute)
- tf.logging.info('eval_dict: {}'.format(eval_dict))
- metric_ops = self.od_eval.get_estimator_eval_metric_ops(eval_dict)
- _, update_op = metric_ops['Precision/mAP@0.5IOU']
-
- with self.test_session() as sess:
- metrics = {}
- for key, (value_op, _) in metric_ops.iteritems():
- metrics[key] = value_op
- sess.run(update_op)
- metrics = sess.run(metrics)
- self.assertAlmostEqual(expected_map, metrics['Precision/mAP@0.5IOU'])
-
-
- if __name__ == '__main__':
- tf.test.main()
|