|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
-
- """Tests for object_detection.utils.per_image_evaluation."""
-
- import numpy as np
- import tensorflow as tf
-
- from object_detection.utils import per_image_evaluation
-
-
- class SingleClassTpFpWithDifficultBoxesTest(tf.test.TestCase):
-
- def setUp(self):
- num_groundtruth_classes = 1
- matching_iou_threshold = 0.5
- nms_iou_threshold = 1.0
- nms_max_output_boxes = 10000
- self.eval = per_image_evaluation.PerImageEvaluation(
- num_groundtruth_classes, matching_iou_threshold, nms_iou_threshold,
- nms_max_output_boxes)
-
- self.detected_boxes = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]],
- dtype=float)
- self.detected_scores = np.array([0.6, 0.8, 0.5], dtype=float)
- detected_masks_0 = np.array([[0, 1, 1, 0],
- [0, 0, 1, 0],
- [0, 0, 0, 0]], dtype=np.uint8)
- detected_masks_1 = np.array([[1, 0, 0, 0],
- [1, 1, 0, 0],
- [0, 0, 0, 0]], dtype=np.uint8)
- detected_masks_2 = np.array([[0, 0, 0, 0],
- [0, 1, 1, 0],
- [0, 1, 0, 0]], dtype=np.uint8)
- self.detected_masks = np.stack(
- [detected_masks_0, detected_masks_1, detected_masks_2], axis=0)
- self.groundtruth_boxes = np.array([[0, 0, 1, 1], [0, 0, 10, 10]],
- dtype=float)
- groundtruth_masks_0 = np.array([[1, 1, 0, 0],
- [1, 1, 0, 0],
- [0, 0, 0, 0]], dtype=np.uint8)
- groundtruth_masks_1 = np.array([[0, 0, 0, 1],
- [0, 0, 0, 1],
- [0, 0, 0, 1]], dtype=np.uint8)
- self.groundtruth_masks = np.stack(
- [groundtruth_masks_0, groundtruth_masks_1], axis=0)
-
- def test_match_to_gt_box_0(self):
- groundtruth_groundtruth_is_difficult_list = np.array([False, True],
- dtype=bool)
- groundtruth_groundtruth_is_group_of_list = np.array(
- [False, False], dtype=bool)
- scores, tp_fp_labels = self.eval._compute_tp_fp_for_single_class(
- self.detected_boxes, self.detected_scores, self.groundtruth_boxes,
- groundtruth_groundtruth_is_difficult_list,
- groundtruth_groundtruth_is_group_of_list)
- expected_scores = np.array([0.8, 0.6, 0.5], dtype=float)
- expected_tp_fp_labels = np.array([False, True, False], dtype=bool)
- self.assertTrue(np.allclose(expected_scores, scores))
- self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels))
-
- def test_mask_match_to_gt_mask_0(self):
- groundtruth_groundtruth_is_difficult_list = np.array([False, True],
- dtype=bool)
- groundtruth_groundtruth_is_group_of_list = np.array(
- [False, False], dtype=bool)
- scores, tp_fp_labels = self.eval._compute_tp_fp_for_single_class(
- self.detected_boxes,
- self.detected_scores,
- self.groundtruth_boxes,
- groundtruth_groundtruth_is_difficult_list,
- groundtruth_groundtruth_is_group_of_list,
- detected_masks=self.detected_masks,
- groundtruth_masks=self.groundtruth_masks)
- expected_scores = np.array([0.8, 0.6, 0.5], dtype=float)
- expected_tp_fp_labels = np.array([True, False, False], dtype=bool)
- self.assertTrue(np.allclose(expected_scores, scores))
- self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels))
-
- def test_match_to_gt_box_1(self):
- groundtruth_groundtruth_is_difficult_list = np.array([True, False],
- dtype=bool)
- groundtruth_groundtruth_is_group_of_list = np.array(
- [False, False], dtype=bool)
- scores, tp_fp_labels = self.eval._compute_tp_fp_for_single_class(
- self.detected_boxes, self.detected_scores, self.groundtruth_boxes,
- groundtruth_groundtruth_is_difficult_list,
- groundtruth_groundtruth_is_group_of_list)
- expected_scores = np.array([0.8, 0.5], dtype=float)
- expected_tp_fp_labels = np.array([False, False], dtype=bool)
- self.assertTrue(np.allclose(expected_scores, scores))
- self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels))
-
- def test_mask_match_to_gt_mask_1(self):
- groundtruth_groundtruth_is_difficult_list = np.array([True, False],
- dtype=bool)
- groundtruth_groundtruth_is_group_of_list = np.array(
- [False, False], dtype=bool)
- scores, tp_fp_labels = self.eval._compute_tp_fp_for_single_class(
- self.detected_boxes,
- self.detected_scores,
- self.groundtruth_boxes,
- groundtruth_groundtruth_is_difficult_list,
- groundtruth_groundtruth_is_group_of_list,
- detected_masks=self.detected_masks,
- groundtruth_masks=self.groundtruth_masks)
- expected_scores = np.array([0.6, 0.5], dtype=float)
- expected_tp_fp_labels = np.array([False, False], dtype=bool)
- self.assertTrue(np.allclose(expected_scores, scores))
- self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels))
-
-
- class SingleClassTpFpWithGroupOfBoxesTest(tf.test.TestCase):
-
- def setUp(self):
- num_groundtruth_classes = 1
- matching_iou_threshold = 0.5
- nms_iou_threshold = 1.0
- nms_max_output_boxes = 10000
- self.eval = per_image_evaluation.PerImageEvaluation(
- num_groundtruth_classes, matching_iou_threshold, nms_iou_threshold,
- nms_max_output_boxes)
-
- self.detected_boxes = np.array(
- [[0, 0, 1, 1], [0, 0, 2, 1], [0, 0, 3, 1]], dtype=float)
- self.detected_scores = np.array([0.8, 0.6, 0.5], dtype=float)
- detected_masks_0 = np.array([[0, 1, 1, 0],
- [0, 0, 1, 0],
- [0, 0, 0, 0]], dtype=np.uint8)
- detected_masks_1 = np.array([[1, 0, 0, 0],
- [1, 1, 0, 0],
- [0, 0, 0, 0]], dtype=np.uint8)
- detected_masks_2 = np.array([[0, 0, 0, 0],
- [0, 1, 1, 0],
- [0, 1, 0, 0]], dtype=np.uint8)
- self.detected_masks = np.stack(
- [detected_masks_0, detected_masks_1, detected_masks_2], axis=0)
-
- self.groundtruth_boxes = np.array(
- [[0, 0, 1, 1], [0, 0, 5, 5], [10, 10, 20, 20]], dtype=float)
- groundtruth_masks_0 = np.array([[1, 0, 0, 0],
- [1, 0, 0, 0],
- [1, 0, 0, 0]], dtype=np.uint8)
- groundtruth_masks_1 = np.array([[0, 0, 1, 0],
- [0, 0, 1, 0],
- [0, 0, 1, 0]], dtype=np.uint8)
- groundtruth_masks_2 = np.array([[0, 1, 0, 0],
- [0, 1, 0, 0],
- [0, 1, 0, 0]], dtype=np.uint8)
- self.groundtruth_masks = np.stack(
- [groundtruth_masks_0, groundtruth_masks_1, groundtruth_masks_2], axis=0)
-
- def test_match_to_non_group_of_and_group_of_box(self):
- groundtruth_groundtruth_is_difficult_list = np.array(
- [False, False, False], dtype=bool)
- groundtruth_groundtruth_is_group_of_list = np.array(
- [False, True, True], dtype=bool)
- expected_scores = np.array([0.8], dtype=float)
- expected_tp_fp_labels = np.array([True], dtype=bool)
- scores, tp_fp_labels = self.eval._compute_tp_fp_for_single_class(
- self.detected_boxes, self.detected_scores, self.groundtruth_boxes,
- groundtruth_groundtruth_is_difficult_list,
- groundtruth_groundtruth_is_group_of_list)
-
- self.assertTrue(np.allclose(expected_scores, scores))
- self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels))
-
- def test_mask_match_to_non_group_of_and_group_of_box(self):
- groundtruth_groundtruth_is_difficult_list = np.array(
- [False, False, False], dtype=bool)
- groundtruth_groundtruth_is_group_of_list = np.array(
- [False, True, True], dtype=bool)
- expected_scores = np.array([0.6], dtype=float)
- expected_tp_fp_labels = np.array([True], dtype=bool)
- scores, tp_fp_labels = self.eval._compute_tp_fp_for_single_class(
- self.detected_boxes,
- self.detected_scores,
- self.groundtruth_boxes,
- groundtruth_groundtruth_is_difficult_list,
- groundtruth_groundtruth_is_group_of_list,
- detected_masks=self.detected_masks,
- groundtruth_masks=self.groundtruth_masks)
-
- self.assertTrue(np.allclose(expected_scores, scores))
- self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels))
-
- def test_match_two_to_group_of_box(self):
- groundtruth_groundtruth_is_difficult_list = np.array(
- [False, False, False], dtype=bool)
- groundtruth_groundtruth_is_group_of_list = np.array(
- [True, False, True], dtype=bool)
- expected_scores = np.array([0.5], dtype=float)
- expected_tp_fp_labels = np.array([False], dtype=bool)
- scores, tp_fp_labels = self.eval._compute_tp_fp_for_single_class(
- self.detected_boxes, self.detected_scores, self.groundtruth_boxes,
- groundtruth_groundtruth_is_difficult_list,
- groundtruth_groundtruth_is_group_of_list)
- self.assertTrue(np.allclose(expected_scores, scores))
- self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels))
-
- def test_mask_match_two_to_group_of_box(self):
- groundtruth_groundtruth_is_difficult_list = np.array(
- [False, False, False], dtype=bool)
- groundtruth_groundtruth_is_group_of_list = np.array(
- [True, False, True], dtype=bool)
- expected_scores = np.array([0.8], dtype=float)
- expected_tp_fp_labels = np.array([True], dtype=bool)
- scores, tp_fp_labels = self.eval._compute_tp_fp_for_single_class(
- self.detected_boxes,
- self.detected_scores,
- self.groundtruth_boxes,
- groundtruth_groundtruth_is_difficult_list,
- groundtruth_groundtruth_is_group_of_list,
- detected_masks=self.detected_masks,
- groundtruth_masks=self.groundtruth_masks)
- self.assertTrue(np.allclose(expected_scores, scores))
- self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels))
-
-
- class SingleClassTpFpWithGroupOfBoxesTestWeighted(tf.test.TestCase):
-
- def setUp(self):
- num_groundtruth_classes = 1
- matching_iou_threshold = 0.5
- nms_iou_threshold = 1.0
- nms_max_output_boxes = 10000
- self.group_of_weight = 0.5
- self.eval = per_image_evaluation.PerImageEvaluation(
- num_groundtruth_classes, matching_iou_threshold, nms_iou_threshold,
- nms_max_output_boxes, self.group_of_weight)
-
- self.detected_boxes = np.array(
- [[0, 0, 1, 1], [0, 0, 2, 1], [0, 0, 3, 1]], dtype=float)
- self.detected_scores = np.array([0.8, 0.6, 0.5], dtype=float)
- detected_masks_0 = np.array(
- [[0, 1, 1, 0], [0, 0, 1, 0], [0, 0, 0, 0]], dtype=np.uint8)
- detected_masks_1 = np.array(
- [[1, 0, 0, 0], [1, 1, 0, 0], [0, 0, 0, 0]], dtype=np.uint8)
- detected_masks_2 = np.array(
- [[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 0, 0]], dtype=np.uint8)
- self.detected_masks = np.stack(
- [detected_masks_0, detected_masks_1, detected_masks_2], axis=0)
-
- self.groundtruth_boxes = np.array(
- [[0, 0, 1, 1], [0, 0, 5, 5], [10, 10, 20, 20]], dtype=float)
- groundtruth_masks_0 = np.array(
- [[1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0]], dtype=np.uint8)
- groundtruth_masks_1 = np.array(
- [[0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0]], dtype=np.uint8)
- groundtruth_masks_2 = np.array(
- [[0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0]], dtype=np.uint8)
- self.groundtruth_masks = np.stack(
- [groundtruth_masks_0, groundtruth_masks_1, groundtruth_masks_2], axis=0)
-
- def test_match_to_non_group_of_and_group_of_box(self):
- groundtruth_groundtruth_is_difficult_list = np.array(
- [False, False, False], dtype=bool)
- groundtruth_groundtruth_is_group_of_list = np.array(
- [False, True, True], dtype=bool)
- expected_scores = np.array([0.8, 0.6], dtype=float)
- expected_tp_fp_labels = np.array([1.0, self.group_of_weight], dtype=float)
- scores, tp_fp_labels = self.eval._compute_tp_fp_for_single_class(
- self.detected_boxes, self.detected_scores, self.groundtruth_boxes,
- groundtruth_groundtruth_is_difficult_list,
- groundtruth_groundtruth_is_group_of_list)
-
- self.assertTrue(np.allclose(expected_scores, scores))
- self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels))
-
- def test_mask_match_to_non_group_of_and_group_of_box(self):
- groundtruth_groundtruth_is_difficult_list = np.array(
- [False, False, False], dtype=bool)
- groundtruth_groundtruth_is_group_of_list = np.array(
- [False, True, True], dtype=bool)
- expected_scores = np.array([0.6, 0.8, 0.5], dtype=float)
- expected_tp_fp_labels = np.array(
- [1.0, self.group_of_weight, self.group_of_weight], dtype=float)
- scores, tp_fp_labels = self.eval._compute_tp_fp_for_single_class(
- self.detected_boxes,
- self.detected_scores,
- self.groundtruth_boxes,
- groundtruth_groundtruth_is_difficult_list,
- groundtruth_groundtruth_is_group_of_list,
- detected_masks=self.detected_masks,
- groundtruth_masks=self.groundtruth_masks)
-
- tf.logging.info(
- "test_mask_match_to_non_group_of_and_group_of_box {} {}".format(
- tp_fp_labels, expected_tp_fp_labels))
-
- self.assertTrue(np.allclose(expected_scores, scores))
- self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels))
-
- def test_match_two_to_group_of_box(self):
- groundtruth_groundtruth_is_difficult_list = np.array(
- [False, False, False], dtype=bool)
- groundtruth_groundtruth_is_group_of_list = np.array(
- [True, False, True], dtype=bool)
- expected_scores = np.array([0.5, 0.8], dtype=float)
- expected_tp_fp_labels = np.array([0.0, self.group_of_weight], dtype=float)
- scores, tp_fp_labels = self.eval._compute_tp_fp_for_single_class(
- self.detected_boxes, self.detected_scores, self.groundtruth_boxes,
- groundtruth_groundtruth_is_difficult_list,
- groundtruth_groundtruth_is_group_of_list)
-
- tf.logging.info("test_match_two_to_group_of_box {} {}".format(
- tp_fp_labels, expected_tp_fp_labels))
-
- self.assertTrue(np.allclose(expected_scores, scores))
- self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels))
-
- def test_mask_match_two_to_group_of_box(self):
- groundtruth_groundtruth_is_difficult_list = np.array(
- [False, False, False], dtype=bool)
- groundtruth_groundtruth_is_group_of_list = np.array(
- [True, False, True], dtype=bool)
- expected_scores = np.array([0.8, 0.6, 0.5], dtype=float)
- expected_tp_fp_labels = np.array(
- [1.0, self.group_of_weight, self.group_of_weight], dtype=float)
- scores, tp_fp_labels = self.eval._compute_tp_fp_for_single_class(
- self.detected_boxes,
- self.detected_scores,
- self.groundtruth_boxes,
- groundtruth_groundtruth_is_difficult_list,
- groundtruth_groundtruth_is_group_of_list,
- detected_masks=self.detected_masks,
- groundtruth_masks=self.groundtruth_masks)
-
- tf.logging.info("test_mask_match_two_to_group_of_box {} {}".format(
- tp_fp_labels, expected_tp_fp_labels))
-
- self.assertTrue(np.allclose(expected_scores, scores))
- self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels))
-
-
- class SingleClassTpFpNoDifficultBoxesTest(tf.test.TestCase):
-
- def setUp(self):
- num_groundtruth_classes = 1
- matching_iou_threshold_high_iou = 0.5
- matching_iou_threshold_low_iou = 0.1
- nms_iou_threshold = 1.0
- nms_max_output_boxes = 10000
- self.eval_high_iou = per_image_evaluation.PerImageEvaluation(
- num_groundtruth_classes, matching_iou_threshold_high_iou,
- nms_iou_threshold, nms_max_output_boxes)
-
- self.eval_low_iou = per_image_evaluation.PerImageEvaluation(
- num_groundtruth_classes, matching_iou_threshold_low_iou,
- nms_iou_threshold, nms_max_output_boxes)
-
- self.detected_boxes = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]],
- dtype=float)
- self.detected_scores = np.array([0.6, 0.8, 0.5], dtype=float)
- detected_masks_0 = np.array([[0, 1, 1, 0],
- [0, 0, 1, 0],
- [0, 0, 0, 0]], dtype=np.uint8)
- detected_masks_1 = np.array([[1, 0, 0, 0],
- [1, 1, 0, 0],
- [0, 0, 0, 0]], dtype=np.uint8)
- detected_masks_2 = np.array([[0, 0, 0, 0],
- [0, 1, 1, 0],
- [0, 1, 0, 0]], dtype=np.uint8)
- self.detected_masks = np.stack(
- [detected_masks_0, detected_masks_1, detected_masks_2], axis=0)
-
- def test_no_true_positives(self):
- groundtruth_boxes = np.array([[100, 100, 105, 105]], dtype=float)
- groundtruth_groundtruth_is_difficult_list = np.zeros(1, dtype=bool)
- groundtruth_groundtruth_is_group_of_list = np.array([False], dtype=bool)
- scores, tp_fp_labels = self.eval_high_iou._compute_tp_fp_for_single_class(
- self.detected_boxes, self.detected_scores, groundtruth_boxes,
- groundtruth_groundtruth_is_difficult_list,
- groundtruth_groundtruth_is_group_of_list)
- expected_scores = np.array([0.8, 0.6, 0.5], dtype=float)
- expected_tp_fp_labels = np.array([False, False, False], dtype=bool)
- self.assertTrue(np.allclose(expected_scores, scores))
- self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels))
-
- def test_mask_no_true_positives(self):
- groundtruth_boxes = np.array([[100, 100, 105, 105]], dtype=float)
- groundtruth_masks_0 = np.array([[1, 1, 1, 1],
- [1, 1, 1, 1],
- [1, 1, 1, 1]], dtype=np.uint8)
- groundtruth_masks = np.stack([groundtruth_masks_0], axis=0)
- groundtruth_groundtruth_is_difficult_list = np.zeros(1, dtype=bool)
- groundtruth_groundtruth_is_group_of_list = np.array([False], dtype=bool)
- scores, tp_fp_labels = self.eval_high_iou._compute_tp_fp_for_single_class(
- self.detected_boxes,
- self.detected_scores,
- groundtruth_boxes,
- groundtruth_groundtruth_is_difficult_list,
- groundtruth_groundtruth_is_group_of_list,
- detected_masks=self.detected_masks,
- groundtruth_masks=groundtruth_masks)
- expected_scores = np.array([0.8, 0.6, 0.5], dtype=float)
- expected_tp_fp_labels = np.array([False, False, False], dtype=bool)
- self.assertTrue(np.allclose(expected_scores, scores))
- self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels))
-
- def test_one_true_positives_with_large_iou_threshold(self):
- groundtruth_boxes = np.array([[0, 0, 1, 1]], dtype=float)
- groundtruth_groundtruth_is_difficult_list = np.zeros(1, dtype=bool)
- groundtruth_groundtruth_is_group_of_list = np.array([False], dtype=bool)
- scores, tp_fp_labels = self.eval_high_iou._compute_tp_fp_for_single_class(
- self.detected_boxes, self.detected_scores, groundtruth_boxes,
- groundtruth_groundtruth_is_difficult_list,
- groundtruth_groundtruth_is_group_of_list)
- expected_scores = np.array([0.8, 0.6, 0.5], dtype=float)
- expected_tp_fp_labels = np.array([False, True, False], dtype=bool)
- self.assertTrue(np.allclose(expected_scores, scores))
- self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels))
-
- def test_mask_one_true_positives_with_large_iou_threshold(self):
- groundtruth_boxes = np.array([[0, 0, 1, 1]], dtype=float)
- groundtruth_masks_0 = np.array([[1, 0, 0, 0],
- [1, 1, 0, 0],
- [0, 0, 0, 0]], dtype=np.uint8)
- groundtruth_masks = np.stack([groundtruth_masks_0], axis=0)
- groundtruth_groundtruth_is_difficult_list = np.zeros(1, dtype=bool)
- groundtruth_groundtruth_is_group_of_list = np.array([False], dtype=bool)
- scores, tp_fp_labels = self.eval_high_iou._compute_tp_fp_for_single_class(
- self.detected_boxes,
- self.detected_scores,
- groundtruth_boxes,
- groundtruth_groundtruth_is_difficult_list,
- groundtruth_groundtruth_is_group_of_list,
- detected_masks=self.detected_masks,
- groundtruth_masks=groundtruth_masks)
- expected_scores = np.array([0.8, 0.6, 0.5], dtype=float)
- expected_tp_fp_labels = np.array([True, False, False], dtype=bool)
- self.assertTrue(np.allclose(expected_scores, scores))
- self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels))
-
- def test_one_true_positives_with_very_small_iou_threshold(self):
- groundtruth_boxes = np.array([[0, 0, 1, 1]], dtype=float)
- groundtruth_groundtruth_is_difficult_list = np.zeros(1, dtype=bool)
- groundtruth_groundtruth_is_group_of_list = np.array([False], dtype=bool)
- scores, tp_fp_labels = self.eval_low_iou._compute_tp_fp_for_single_class(
- self.detected_boxes, self.detected_scores, groundtruth_boxes,
- groundtruth_groundtruth_is_difficult_list,
- groundtruth_groundtruth_is_group_of_list)
- expected_scores = np.array([0.8, 0.6, 0.5], dtype=float)
- expected_tp_fp_labels = np.array([True, False, False], dtype=bool)
- self.assertTrue(np.allclose(expected_scores, scores))
- self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels))
-
- def test_two_true_positives_with_large_iou_threshold(self):
- groundtruth_boxes = np.array([[0, 0, 1, 1], [0, 0, 3.5, 3.5]], dtype=float)
- groundtruth_groundtruth_is_difficult_list = np.zeros(2, dtype=bool)
- groundtruth_groundtruth_is_group_of_list = np.array(
- [False, False], dtype=bool)
- scores, tp_fp_labels = self.eval_high_iou._compute_tp_fp_for_single_class(
- self.detected_boxes, self.detected_scores, groundtruth_boxes,
- groundtruth_groundtruth_is_difficult_list,
- groundtruth_groundtruth_is_group_of_list)
- expected_scores = np.array([0.8, 0.6, 0.5], dtype=float)
- expected_tp_fp_labels = np.array([False, True, True], dtype=bool)
- self.assertTrue(np.allclose(expected_scores, scores))
- self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels))
-
-
- class MultiClassesTpFpTest(tf.test.TestCase):
-
- def test_tp_fp(self):
- num_groundtruth_classes = 3
- matching_iou_threshold = 0.5
- nms_iou_threshold = 1.0
- nms_max_output_boxes = 10000
- eval1 = per_image_evaluation.PerImageEvaluation(num_groundtruth_classes,
- matching_iou_threshold,
- nms_iou_threshold,
- nms_max_output_boxes)
- detected_boxes = np.array([[0, 0, 1, 1], [10, 10, 5, 5], [0, 0, 2, 2],
- [5, 10, 10, 5], [10, 5, 5, 10], [0, 0, 3, 3]],
- dtype=float)
- detected_scores = np.array([0.8, 0.1, 0.8, 0.9, 0.7, 0.8], dtype=float)
- detected_class_labels = np.array([0, 1, 1, 2, 0, 2], dtype=int)
- groundtruth_boxes = np.array([[0, 0, 1, 1], [0, 0, 3.5, 3.5]], dtype=float)
- groundtruth_class_labels = np.array([0, 2], dtype=int)
- groundtruth_groundtruth_is_difficult_list = np.zeros(2, dtype=float)
- groundtruth_groundtruth_is_group_of_list = np.array(
- [False, False], dtype=bool)
- scores, tp_fp_labels, _ = eval1.compute_object_detection_metrics(
- detected_boxes, detected_scores, detected_class_labels,
- groundtruth_boxes, groundtruth_class_labels,
- groundtruth_groundtruth_is_difficult_list,
- groundtruth_groundtruth_is_group_of_list)
- expected_scores = [np.array([0.8], dtype=float)] * 3
- expected_tp_fp_labels = [np.array([True]), np.array([False]), np.array([True
- ])]
- for i in range(len(expected_scores)):
- self.assertTrue(np.allclose(expected_scores[i], scores[i]))
- self.assertTrue(np.array_equal(expected_tp_fp_labels[i], tp_fp_labels[i]))
-
-
- class CorLocTest(tf.test.TestCase):
-
- def test_compute_corloc_with_normal_iou_threshold(self):
- num_groundtruth_classes = 3
- matching_iou_threshold = 0.5
- nms_iou_threshold = 1.0
- nms_max_output_boxes = 10000
- eval1 = per_image_evaluation.PerImageEvaluation(num_groundtruth_classes,
- matching_iou_threshold,
- nms_iou_threshold,
- nms_max_output_boxes)
- detected_boxes = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3],
- [0, 0, 5, 5]], dtype=float)
- detected_scores = np.array([0.9, 0.9, 0.1, 0.9], dtype=float)
- detected_class_labels = np.array([0, 1, 0, 2], dtype=int)
- groundtruth_boxes = np.array([[0, 0, 1, 1], [0, 0, 3, 3], [0, 0, 6, 6]],
- dtype=float)
- groundtruth_class_labels = np.array([0, 0, 2], dtype=int)
-
- is_class_correctly_detected_in_image = eval1._compute_cor_loc(
- detected_boxes, detected_scores, detected_class_labels,
- groundtruth_boxes, groundtruth_class_labels)
- expected_result = np.array([1, 0, 1], dtype=int)
- self.assertTrue(np.array_equal(expected_result,
- is_class_correctly_detected_in_image))
-
- def test_compute_corloc_with_very_large_iou_threshold(self):
- num_groundtruth_classes = 3
- matching_iou_threshold = 0.9
- nms_iou_threshold = 1.0
- nms_max_output_boxes = 10000
- eval1 = per_image_evaluation.PerImageEvaluation(num_groundtruth_classes,
- matching_iou_threshold,
- nms_iou_threshold,
- nms_max_output_boxes)
- detected_boxes = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3],
- [0, 0, 5, 5]], dtype=float)
- detected_scores = np.array([0.9, 0.9, 0.1, 0.9], dtype=float)
- detected_class_labels = np.array([0, 1, 0, 2], dtype=int)
- groundtruth_boxes = np.array([[0, 0, 1, 1], [0, 0, 3, 3], [0, 0, 6, 6]],
- dtype=float)
- groundtruth_class_labels = np.array([0, 0, 2], dtype=int)
-
- is_class_correctly_detected_in_image = eval1._compute_cor_loc(
- detected_boxes, detected_scores, detected_class_labels,
- groundtruth_boxes, groundtruth_class_labels)
- expected_result = np.array([1, 0, 0], dtype=int)
- self.assertTrue(np.array_equal(expected_result,
- is_class_correctly_detected_in_image))
-
-
- if __name__ == "__main__":
- tf.test.main()
|