- #!/usr/bin/python3
-
- import pickle
- import threading
- import sys,getpass
- import cv2
- import os
- import numpy as np
- import psutil
- import subprocess
-
- from telnetlib import Telnet
-
- from utils import label_map_util
- from utils import visualization_utils as vis_util
-
- if getpass.getuser() == "tedankara":
-
- import tensorflow as tf
- from distutils.version import StrictVersion
-
- if StrictVersion(tf.__version__) < StrictVersion('1.12.0'):
- raise ImportError('Please upgrade your TensorFlow installation to v1.12.*.')
- else:
- # import psutil
- pass
-
- import json
-
- import base64
- from PIL import Image
- from io import BytesIO
- from urllib.parse import urlencode
- from urllib.request import Request, urlopen
- from imutils.video import VideoStream
- import ssl
-
- switch = 1
-
- import socket
-
- # This is needed since the notebook is stored in the object_detection folder.
- sys.path.append("..")
- import time
- from object_detection.utils import ops as utils_ops
-
- TELNET = True
-
- AI_IP = '127.0.0.1'
- LIGHT_IP = '192.168.2.174'
- context = ssl._create_unverified_context()
- if TELNET:
- tn = Telnet(LIGHT_IP, 31)
- light_green = False
-
- # What model to download.
-
-
- encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), 90]
-
- PATH_TO_LABELS = os.path.join('object_detection/data', 'mscoco_label_map.pbtxt')
-
-
- category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
-
-
-
- def load_image_into_numpy_array(image):
- (im_width, im_height) = image.size
- return np.array(image.getdata()).reshape(
- (im_height, im_width, 3)).astype(np.uint8)
-
- data = {"gpu_temp":"10C","gpu_load":"15%","cpu_temp":"47C","cpu_load":"15%","mem_temp":"NaN","mem_load":"17%","fan_speed":"10000RPM"}
-
-
- def get_temps():
- global data
- temps = psutil.sensors_temperatures()
- result = subprocess.run(['nvidia-smi', '--query-gpu=utilization.memory', '--format=csv'] , stdout=subprocess.PIPE)
- data["gpu_load"] = result.stdout.decode("utf-8").split("\n")[1]
- result = subprocess.run(['nvidia-smi', '--query-gpu=temperature.gpu', '--format=csv'] , stdout=subprocess.PIPE)
- data["gpu_temp"] = result.stdout.decode("utf-8").split("\n")[1]+"°C"
- data["cpu_temp"] = str(int(temps["coretemp"][0][1]))+"°C"
- data["cpu_load"] = str(psutil.cpu_percent())+"%"
- data["mem_load"] = str(dict(psutil.virtual_memory()._asdict())["percent"])+"%"
- data["fan_speed"] = str(psutil.sensors_fans()["dell_smm"][0][1])+"RPM"
-
-
- def run_inference_for_single_image(image):
- _, buffer = cv2.imencode('.jpg', image)
- img_base64 = base64.b64encode(buffer).decode('ascii')
- url = 'https://%s:5001/ai' % AI_IP # Set destination URL here
- post_fields = {'img': img_base64,"type":"coco"} # Set POST fields here
- request = Request(url, urlencode(post_fields).encode())
- data = urlopen(request, context=context).read().decode("ascii")
- output_dict = json.loads(data)
- return output_dict
-
- kill = True
-
- def listener(port=8385):
- serversocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
- serversocket.bind((socket.gethostname(), port))
- serversocket.listen(5)
- while kill:
- serversocket.accept()
-
- print('Bye!')
-
- def lights_on():
- global light_green
- light_green = True
- tn.write(b"1-0")
- time.sleep(1)
- tn.write(b"2-0")
- time.sleep(10)
- light_green = False
- tn.write(b"0-1")
- time.sleep(1)
- tn.write(b"0-2")
-
- cut = (150, 250, 250, 150)
- cut_send = [0, 0, 0, 0]
- img_counter = 0
- socket_switch = True
-
- thread = threading.Thread(target=listener)
- thread.start()
-
- cam = VideoStream(src=0).start()
-
-
- switch = 0
- get_temps()
- # (left, right, top, bottom)
- ambulance_coordinates = (150, 400, 250, 400)
-
- reps = -1
- reps_vid = 0
-
- while 1:
- image = cam.read()
- reps_vid += 1
-
- reps += 1
- try: # Kavşak
- t1 = time.time()
- image_np = image
- output_dict = run_inference_for_single_image(image_np)
-
- height, width, channels = image_np.shape
- cv2.imshow('frmmi', image[ambulance_coordinates[2]:ambulance_coordinates[3], ambulance_coordinates[0]:ambulance_coordinates[1]])
-
- out_dict = {'detection_boxes': [], 'detection_classes': [], 'detection_scores': []}
- for index,i in enumerate(output_dict['detection_classes']):
- cont = False
- if i in [3, 6, 8,44,77]: # Car, bus, truck
- score = output_dict['detection_scores'][index]
- if score > 0.3:
- if not any((output_dict['detection_boxes'][index] == b) for b in out_dict['detection_boxes']):
- avg_x = (output_dict['detection_boxes'][index][0] + output_dict['detection_boxes'][index][2])/2
- avg_y = (output_dict['detection_boxes'][index][1] + output_dict['detection_boxes'][index][3])/2
- for box in out_dict['detection_boxes']:
- avg_box_x = (box[0] + box[2])/2
- avg_box_y = (box[1] + box[3])/2
- if abs(avg_x-avg_box_x) < 0.1 and abs(avg_y-avg_box_y) < 0.1:
- cont = True
- break
- if cont:
- continue
- out_dict['detection_classes'].append(i)
- out_dict['detection_boxes'].append(output_dict['detection_boxes'][index])
- out_dict['detection_scores'].append(output_dict['detection_scores'][index])
-
- out_dict['detection_classes'] = np.array(out_dict['detection_classes'])
- out_dict['detection_boxes'] = np.array(out_dict['detection_boxes'])
- out_dict['detection_scores'] = np.array(out_dict['detection_scores'])
-
- im_height, im_width, _ = image_np.shape
- if not light_green and TELNET:
- for index, box in enumerate(out_dict['detection_boxes']):
- box = tuple(map(int, (box[1] * im_width, box[3] * im_width, box[0] * im_height, box[2] * im_height)))
- # (left, right, top, bottom)
- if abs((box[0] + box[1])/2 - (ambulance_coordinates[0] + ambulance_coordinates[1])/2) < 25 and \
- abs((box[2] + box[3])/2 - (ambulance_coordinates[2] + ambulance_coordinates[3])/2) < 25:
- print('ambulance')
- threading.Thread(target=lights_on).start()
-
- vis_util.visualize_boxes_and_labels_on_image_array(
- image_np,
- out_dict['detection_boxes'],
- out_dict['detection_classes'],
- out_dict['detection_scores'],
- category_index,
- instance_masks=out_dict.get('detection_masks'),
- use_normalized_coordinates=True,
- line_thickness=8,
- min_score_thresh=0.3
- )
- #cv2.imshow('frame', image_np)
- #ex_c = [27, ord("q"), ord("Q")]
- #if cv2.waitKey(1) & 0xFF in ex_c:
- # break
-
- t2 = time.time()
- print("time taken for {}".format(t2-t1))
- if not sys.platform == "win32" and t2-t1 < 0.1:
- time.sleep(0.1-(t2-t1))
- send_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
- if socket_switch:
- try:
- client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
- client_socket.settimeout(0.1)
- client_socket.connect(('127.0.0.1', 8485))
- connection = client_socket.makefile('wb')
- socket_switch = False
- except:
- socket_switch = True
- continue
- try:
- crop_img = send_image.copy(order='C')
- crop_img = Image.fromarray(crop_img, "RGB")
- buffered = BytesIO()
- crop_img.save(buffered, format="JPEG")
- img = base64.b64encode(buffered.getvalue()).decode("ascii")
- lens = [len(send_image), 0, len(send_image[0])]
- for i in range(0,len(cut), 2):
- if cut[i] < 0:
- cut_send[i] = lens[i] + cut[i]
- cut_send[i+1] = abs(cut[i])-abs(cut[i+1])
- client_socket.sendall(json.dumps({"image_full":img,"image_sizes":{"x":90,"y":0,"width":140,"height":140},"load":data}).encode('gbk')+b"\n")
- img_counter += 1
- except:
- socket_switch = True
-
- if img_counter % 10 == 0:
- get_temps()
- pass
-
- except Exception as e:
- if hasattr(e, 'message'):
- print(e.message)
- else:
- print(e)
- break
-
-
-
- if not socket_switch:
- client_socket.sendall(b"Bye\n")
- cam.release()
-
-
- cv2.destroyAllWindows()
- cam.stop()
- kill = False
- thread.join()
|