|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Functions for computing metrics like precision, recall, CorLoc and etc."""
- from __future__ import division
-
- import numpy as np
-
-
- def compute_precision_recall(scores, labels, num_gt):
- """Compute precision and recall.
-
- Args:
- scores: A float numpy array representing detection score
- labels: A float numpy array representing weighted true/false positive labels
- num_gt: Number of ground truth instances
-
- Raises:
- ValueError: if the input is not of the correct format
-
- Returns:
- precision: Fraction of positive instances over detected ones. This value is
- None if no ground truth labels are present.
- recall: Fraction of detected positive instance over all positive instances.
- This value is None if no ground truth labels are present.
-
- """
- if not isinstance(labels, np.ndarray) or len(labels.shape) != 1:
- raise ValueError("labels must be single dimension numpy array")
-
- if labels.dtype != np.float and labels.dtype != np.bool:
- raise ValueError("labels type must be either bool or float")
-
- if not isinstance(scores, np.ndarray) or len(scores.shape) != 1:
- raise ValueError("scores must be single dimension numpy array")
-
- if num_gt < np.sum(labels):
- raise ValueError("Number of true positives must be smaller than num_gt.")
-
- if len(scores) != len(labels):
- raise ValueError("scores and labels must be of the same size.")
-
- if num_gt == 0:
- return None, None
-
- sorted_indices = np.argsort(scores)
- sorted_indices = sorted_indices[::-1]
- true_positive_labels = labels[sorted_indices]
- false_positive_labels = (true_positive_labels <= 0).astype(float)
- cum_true_positives = np.cumsum(true_positive_labels)
- cum_false_positives = np.cumsum(false_positive_labels)
- precision = cum_true_positives.astype(float) / (
- cum_true_positives + cum_false_positives)
- recall = cum_true_positives.astype(float) / num_gt
- return precision, recall
-
-
- def compute_average_precision(precision, recall):
- """Compute Average Precision according to the definition in VOCdevkit.
-
- Precision is modified to ensure that it does not decrease as recall
- decrease.
-
- Args:
- precision: A float [N, 1] numpy array of precisions
- recall: A float [N, 1] numpy array of recalls
-
- Raises:
- ValueError: if the input is not of the correct format
-
- Returns:
- average_precison: The area under the precision recall curve. NaN if
- precision and recall are None.
-
- """
- if precision is None:
- if recall is not None:
- raise ValueError("If precision is None, recall must also be None")
- return np.NAN
-
- if not isinstance(precision, np.ndarray) or not isinstance(
- recall, np.ndarray):
- raise ValueError("precision and recall must be numpy array")
- if precision.dtype != np.float or recall.dtype != np.float:
- raise ValueError("input must be float numpy array.")
- if len(precision) != len(recall):
- raise ValueError("precision and recall must be of the same size.")
- if not precision.size:
- return 0.0
- if np.amin(precision) < 0 or np.amax(precision) > 1:
- raise ValueError("Precision must be in the range of [0, 1].")
- if np.amin(recall) < 0 or np.amax(recall) > 1:
- raise ValueError("recall must be in the range of [0, 1].")
- if not all(recall[i] <= recall[i + 1] for i in range(len(recall) - 1)):
- raise ValueError("recall must be a non-decreasing array")
-
- recall = np.concatenate([[0], recall, [1]])
- precision = np.concatenate([[0], precision, [0]])
-
- # Preprocess precision to be a non-decreasing array
- for i in range(len(precision) - 2, -1, -1):
- precision[i] = np.maximum(precision[i], precision[i + 1])
-
- indices = np.where(recall[1:] != recall[:-1])[0] + 1
- average_precision = np.sum(
- (recall[indices] - recall[indices - 1]) * precision[indices])
- return average_precision
-
-
- def compute_cor_loc(num_gt_imgs_per_class,
- num_images_correctly_detected_per_class):
- """Compute CorLoc according to the definition in the following paper.
-
- https://www.robots.ox.ac.uk/~vgg/rg/papers/deselaers-eccv10.pdf
-
- Returns nans if there are no ground truth images for a class.
-
- Args:
- num_gt_imgs_per_class: 1D array, representing number of images containing
- at least one object instance of a particular class
- num_images_correctly_detected_per_class: 1D array, representing number of
- images that are correctly detected at least one object instance of a
- particular class
-
- Returns:
- corloc_per_class: A float numpy array represents the corloc score of each
- class
- """
- return np.where(
- num_gt_imgs_per_class == 0, np.nan,
- num_images_correctly_detected_per_class / num_gt_imgs_per_class)
-
-
- def compute_median_rank_at_k(tp_fp_list, k):
- """Computes MedianRank@k, where k is the top-scoring labels.
-
- Args:
- tp_fp_list: a list of numpy arrays; each numpy array corresponds to the all
- detection on a single image, where the detections are sorted by score in
- descending order. Further, each numpy array element can have boolean or
- float values. True positive elements have either value >0.0 or True;
- any other value is considered false positive.
- k: number of top-scoring proposals to take.
-
- Returns:
- median_rank: median rank of all true positive proposals among top k by
- score.
- """
- ranks = []
- for i in range(len(tp_fp_list)):
- ranks.append(
- np.where(tp_fp_list[i][0:min(k, tp_fp_list[i].shape[0])] > 0)[0])
- concatenated_ranks = np.concatenate(ranks)
- return np.median(concatenated_ranks)
-
-
- def compute_recall_at_k(tp_fp_list, num_gt, k):
- """Computes Recall@k, MedianRank@k, where k is the top-scoring labels.
-
- Args:
- tp_fp_list: a list of numpy arrays; each numpy array corresponds to the all
- detection on a single image, where the detections are sorted by score in
- descending order. Further, each numpy array element can have boolean or
- float values. True positive elements have either value >0.0 or True;
- any other value is considered false positive.
- num_gt: number of groundtruth anotations.
- k: number of top-scoring proposals to take.
-
- Returns:
- recall: recall evaluated on the top k by score detections.
- """
-
- tp_fp_eval = []
- for i in range(len(tp_fp_list)):
- tp_fp_eval.append(tp_fp_list[i][0:min(k, tp_fp_list[i].shape[0])])
-
- tp_fp_eval = np.concatenate(tp_fp_eval)
-
- return np.sum(tp_fp_eval) / num_gt
|