|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
-
- """Operations for [N, height, width] numpy arrays representing masks.
-
- Example mask operations that are supported:
- * Areas: compute mask areas
- * IOU: pairwise intersection-over-union scores
- """
- import numpy as np
-
- EPSILON = 1e-7
-
-
- def area(masks):
- """Computes area of masks.
-
- Args:
- masks: Numpy array with shape [N, height, width] holding N masks. Masks
- values are of type np.uint8 and values are in {0,1}.
-
- Returns:
- a numpy array with shape [N*1] representing mask areas.
-
- Raises:
- ValueError: If masks.dtype is not np.uint8
- """
- if masks.dtype != np.uint8:
- raise ValueError('Masks type should be np.uint8')
- return np.sum(masks, axis=(1, 2), dtype=np.float32)
-
-
- def intersection(masks1, masks2):
- """Compute pairwise intersection areas between masks.
-
- Args:
- masks1: a numpy array with shape [N, height, width] holding N masks. Masks
- values are of type np.uint8 and values are in {0,1}.
- masks2: a numpy array with shape [M, height, width] holding M masks. Masks
- values are of type np.uint8 and values are in {0,1}.
-
- Returns:
- a numpy array with shape [N*M] representing pairwise intersection area.
-
- Raises:
- ValueError: If masks1 and masks2 are not of type np.uint8.
- """
- if masks1.dtype != np.uint8 or masks2.dtype != np.uint8:
- raise ValueError('masks1 and masks2 should be of type np.uint8')
- n = masks1.shape[0]
- m = masks2.shape[0]
- answer = np.zeros([n, m], dtype=np.float32)
- for i in np.arange(n):
- for j in np.arange(m):
- answer[i, j] = np.sum(np.minimum(masks1[i], masks2[j]), dtype=np.float32)
- return answer
-
-
- def iou(masks1, masks2):
- """Computes pairwise intersection-over-union between mask collections.
-
- Args:
- masks1: a numpy array with shape [N, height, width] holding N masks. Masks
- values are of type np.uint8 and values are in {0,1}.
- masks2: a numpy array with shape [M, height, width] holding N masks. Masks
- values are of type np.uint8 and values are in {0,1}.
-
- Returns:
- a numpy array with shape [N, M] representing pairwise iou scores.
-
- Raises:
- ValueError: If masks1 and masks2 are not of type np.uint8.
- """
- if masks1.dtype != np.uint8 or masks2.dtype != np.uint8:
- raise ValueError('masks1 and masks2 should be of type np.uint8')
- intersect = intersection(masks1, masks2)
- area1 = area(masks1)
- area2 = area(masks2)
- union = np.expand_dims(area1, axis=1) + np.expand_dims(
- area2, axis=0) - intersect
- return intersect / np.maximum(union, EPSILON)
-
-
- def ioa(masks1, masks2):
- """Computes pairwise intersection-over-area between box collections.
-
- Intersection-over-area (ioa) between two masks, mask1 and mask2 is defined as
- their intersection area over mask2's area. Note that ioa is not symmetric,
- that is, IOA(mask1, mask2) != IOA(mask2, mask1).
-
- Args:
- masks1: a numpy array with shape [N, height, width] holding N masks. Masks
- values are of type np.uint8 and values are in {0,1}.
- masks2: a numpy array with shape [M, height, width] holding N masks. Masks
- values are of type np.uint8 and values are in {0,1}.
-
- Returns:
- a numpy array with shape [N, M] representing pairwise ioa scores.
-
- Raises:
- ValueError: If masks1 and masks2 are not of type np.uint8.
- """
- if masks1.dtype != np.uint8 or masks2.dtype != np.uint8:
- raise ValueError('masks1 and masks2 should be of type np.uint8')
- intersect = intersection(masks1, masks2)
- areas = np.expand_dims(area(masks2), axis=0)
- return intersect / (areas + EPSILON)
|