|
|
- # Copyright 2018 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # #==========================================================================
-
- FROM tensorflow/tensorflow:nightly-devel
-
- # Get the tensorflow models research directory, and move it into tensorflow
- # source folder to match recommendation of installation
- RUN git clone --depth 1 https://github.com/tensorflow/models.git && \
- mv models /tensorflow/models
-
-
- # Install gcloud and gsutil commands
- # https://cloud.google.com/sdk/docs/quickstart-debian-ubuntu
- RUN export CLOUD_SDK_REPO="cloud-sdk-$(lsb_release -c -s)" && \
- echo "deb http://packages.cloud.google.com/apt $CLOUD_SDK_REPO main" | tee -a /etc/apt/sources.list.d/google-cloud-sdk.list && \
- curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add - && \
- apt-get update -y && apt-get install google-cloud-sdk -y
-
-
- # Install the Tensorflow Object Detection API from here
- # https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md
-
- # Install object detection api dependencies
- RUN apt-get install -y protobuf-compiler python-pil python-lxml python-tk && \
- pip install Cython && \
- pip install contextlib2 && \
- pip install jupyter && \
- pip install matplotlib
-
- # Install pycocoapi
- RUN git clone --depth 1 https://github.com/cocodataset/cocoapi.git && \
- cd cocoapi/PythonAPI && \
- make -j8 && \
- cp -r pycocotools /tensorflow/models/research && \
- cd ../../ && \
- rm -rf cocoapi
-
- # Get protoc 3.0.0, rather than the old version already in the container
- RUN curl -OL "https://github.com/google/protobuf/releases/download/v3.0.0/protoc-3.0.0-linux-x86_64.zip" && \
- unzip protoc-3.0.0-linux-x86_64.zip -d proto3 && \
- mv proto3/bin/* /usr/local/bin && \
- mv proto3/include/* /usr/local/include && \
- rm -rf proto3 protoc-3.0.0-linux-x86_64.zip
-
- # Run protoc on the object detection repo
- RUN cd /tensorflow/models/research && \
- protoc object_detection/protos/*.proto --python_out=.
-
- # Set the PYTHONPATH to finish installing the API
- ENV PYTHONPATH $PYTHONPATH:/tensorflow/models/research:/tensorflow/models/research/slim
-
-
- # Install wget (to make life easier below) and editors (to allow people to edit
- # the files inside the container)
- RUN apt-get install -y wget vim emacs nano
-
-
- # Grab various data files which are used throughout the demo: dataset,
- # pretrained model, and pretrained TensorFlow Lite model. Install these all in
- # the same directories as recommended by the blog post.
-
- # Pets example dataset
- RUN mkdir -p /tmp/pet_faces_tfrecord/ && \
- cd /tmp/pet_faces_tfrecord && \
- curl "http://download.tensorflow.org/models/object_detection/pet_faces_tfrecord.tar.gz" | tar xzf -
-
- # Pretrained model
- # This one doesn't need its own directory, since it comes in a folder.
- RUN cd /tmp && \
- curl -O "http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_0.75_depth_300x300_coco14_sync_2018_07_03.tar.gz" && \
- tar xzf ssd_mobilenet_v1_0.75_depth_300x300_coco14_sync_2018_07_03.tar.gz && \
- rm ssd_mobilenet_v1_0.75_depth_300x300_coco14_sync_2018_07_03.tar.gz
-
- # Trained TensorFlow Lite model. This should get replaced by one generated from
- # export_tflite_ssd_graph.py when that command is called.
- RUN cd /tmp && \
- curl -L -o tflite.zip \
- https://storage.googleapis.com/download.tensorflow.org/models/tflite/frozengraphs_ssd_mobilenet_v1_0.75_quant_pets_2018_06_29.zip && \
- unzip tflite.zip -d tflite && \
- rm tflite.zip
-
-
- # Install Android development tools
- # Inspired by the following sources:
- # https://github.com/bitrise-docker/android/blob/master/Dockerfile
- # https://github.com/reddit/docker-android-build/blob/master/Dockerfile
-
- # Set environment variables
- ENV ANDROID_HOME /opt/android-sdk-linux
- ENV ANDROID_NDK_HOME /opt/android-ndk-r14b
- ENV PATH ${PATH}:${ANDROID_HOME}/tools:${ANDROID_HOME}/tools/bin:${ANDROID_HOME}/platform-tools
-
- # Install SDK tools
- RUN cd /opt && \
- curl -OL https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip && \
- unzip sdk-tools-linux-4333796.zip -d ${ANDROID_HOME} && \
- rm sdk-tools-linux-4333796.zip
-
- # Accept licenses before installing components, no need to echo y for each component
- # License is valid for all the standard components in versions installed from this file
- # Non-standard components: MIPS system images, preview versions, GDK (Google Glass) and Android Google TV require separate licenses, not accepted there
- RUN yes | sdkmanager --licenses
-
- # Install platform tools, SDK platform, and other build tools
- RUN yes | sdkmanager \
- "tools" \
- "platform-tools" \
- "platforms;android-27" \
- "platforms;android-23" \
- "build-tools;27.0.3" \
- "build-tools;23.0.3"
-
- # Install Android NDK (r14b)
- RUN cd /opt && \
- curl -L -o android-ndk.zip http://dl.google.com/android/repository/android-ndk-r14b-linux-x86_64.zip && \
- unzip -q android-ndk.zip && \
- rm -f android-ndk.zip
-
- # Configure the build to use the things we just downloaded
- RUN cd /tensorflow && \
- printf '\n\nn\ny\nn\nn\nn\ny\nn\nn\nn\nn\nn\nn\n\ny\n%s\n\n\n' ${ANDROID_HOME}|./configure
-
-
- WORKDIR /tensorflow
|