|
|
- #!/usr/bin/python3
-
- import numpy as np
- import os
- import six.moves.urllib as urllib
- import sys
- import tarfile
- import tensorflow as tf
- import zipfile
- import cv2
- from distutils.version import StrictVersion
- from collections import defaultdict
- from io import StringIO
-
- from utils import label_map_util
-
- from utils import visualization_utils as vis_util
- from PIL import Image
- switch = 1
- # This is needed since the notebook is stored in the object_detection folder.
- sys.path.append("..")
- import time
- from object_detection.utils import ops as utils_ops
-
- if StrictVersion(tf.__version__) < StrictVersion('1.12.0'):
- raise ImportError('Please upgrade your TensorFlow installation to v1.12.*.')
-
- # What model to download.
-
- #MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17' #not even worth trying
- MODEL_NAME="ssd_inception_v2_coco_11_06_2017" # not bad and fast
- MODEL_NAME="rfcn_resnet101_coco_11_06_2017" # WORKS BEST BUT takes 4 times longer per image
- #MODEL_NAME = "faster_rcnn_resnet101_coco_11_06_2017" # too slow
- MODEL_FILE = MODEL_NAME + '.tar.gz'
- DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
-
- # Path to frozen detection graph. This is the actual model that is used for the object detection.
- PATH_TO_FROZEN_GRAPH = MODEL_NAME + '/frozen_inference_graph.pb'
-
- # List of the strings that is used to add correct label for each box.
- PATH_TO_LABELS = os.path.join('object_detection/data', 'mscoco_label_map.pbtxt')
-
- detection_graph = tf.Graph()
- with detection_graph.as_default():
- od_graph_def = tf.GraphDef()
- with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:
- serialized_graph = fid.read()
- od_graph_def.ParseFromString(serialized_graph)
- tf.import_graph_def(od_graph_def, name='')
-
- category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
-
- def load_image_into_numpy_array(image):
- (im_width, im_height) = image.size
- return np.array(image.getdata()).reshape(
- (im_height, im_width, 3)).astype(np.uint8)
-
- # For the sake of simplicity we will use only 2 images:
- # image1.jpg
- # image2.jpg
- # If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
- PATH_TO_TEST_IMAGES_DIR = 'object_detection/test_images'
- TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(3, 6) ]
-
- # Size, in inches, of the output images.
- sess = 0
- switch = 1
- def run_inference_for_single_image(image, graph):
- global switch
- global sess
- with graph.as_default():
- if(switch):
- sess = tf.Session()
- switch = 0
- # Get handles to input and output tensors
- ops = tf.get_default_graph().get_operations()
- all_tensor_names = {output.name for op in ops for output in op.outputs}
- tensor_dict = {}
- for key in [
- 'num_detections', 'detection_boxes', 'detection_scores',
- 'detection_classes', 'detection_masks'
- ]:
- tensor_name = key + ':0'
- if tensor_name in all_tensor_names:
- tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
- tensor_name)
- if 'detection_masks' in tensor_dict:
- # The following processing is only for single image
- detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
- detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
- # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
- real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
- detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
- detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
- detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
- detection_masks, detection_boxes, image.shape[1], image.shape[2])
- detection_masks_reframed = tf.cast(
- tf.greater(detection_masks_reframed, 0.5), tf.uint8)
- # Follow the convention by adding back the batch dimension
- tensor_dict['detection_masks'] = tf.expand_dims(
- detection_masks_reframed, 0)
- image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
- # Run inference
- output_dict = sess.run(tensor_dict,
- feed_dict={image_tensor: image})
- # all outputs are float32 numpy arrays, so convert types as appropriate
- output_dict['num_detections'] = int(output_dict['num_detections'][0])
- output_dict['detection_classes'] = output_dict[
- 'detection_classes'][0].astype(np.int64)
- output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
- output_dict['detection_scores'] = output_dict['detection_scores'][0]
- if 'detection_masks' in output_dict:
- output_dict['detection_masks'] = output_dict['detection_masks'][0]
- return output_dict
- cut=[-175,-1,-175,-1]
- a = 1
- cam = cv2.VideoCapture(0)
- with detection_graph.as_default():
- sess = tf.Session()
- switch = 0
- while 1:
- if(True):
-
- ret,image = cam.read()
- image_np = image[cut[0]:cut[1],cut[2]:cut[3]]
- #image_np = image_np[int(r[1]):int(r[1]+r[3]),int(r[0]):int(r[0]+r[2])]
- # the array based representation of the image will be used later in order to prepare the
- # result image with boxes and labels on it.
-
- # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
- image_np_expanded = np.expand_dims(image_np, axis=0)
- t1 = time.time()
- # Actual detection.
- output_dict = run_inference_for_single_image(image_np_expanded, detection_graph)
- # Visualization of the results of a detection.
- vis_util.visualize_boxes_and_labels_on_image_array(
- image_np,
- output_dict['detection_boxes'],
- output_dict['detection_classes'],
- output_dict['detection_scores'],
- category_index,
- instance_masks=output_dict.get('detection_masks'),
- use_normalized_coordinates=True,
- line_thickness=8)
- image[cut[0]:cut[1],cut[2]:cut[3]] = image_np
- cv2.imshow("Cam",np.concatenate((image,image_np),axis=0))
- t2 = time.time()
- print("time taken for {}".format(t2-t1))
-
- ex_c = [27, ord("q"), ord("Q")]
- if cv2.waitKey(1) & 0xFF in ex_c:
- break
- cv2.destroyAllWindows()
- cam.release()
|