|
|
- # Tensorflow detection model zoo
-
- We provide a collection of detection models pre-trained on the [COCO
- dataset](http://mscoco.org), the [Kitti dataset](http://www.cvlibs.net/datasets/kitti/),
- the [Open Images dataset](https://github.com/openimages/dataset), the
- [AVA v2.1 dataset](https://research.google.com/ava/) and the
- [iNaturalist Species Detection Dataset](https://github.com/visipedia/inat_comp/blob/master/2017/README.md#bounding-boxes).
- These models can be useful for out-of-the-box inference if you are interested in
- categories already in those datasets. They are also useful for initializing your
- models when training on novel datasets.
-
- In the table below, we list each such pre-trained model including:
-
- * a model name that corresponds to a config file that was used to train this
- model in the `samples/configs` directory,
- * a download link to a tar.gz file containing the pre-trained model,
- * model speed --- we report running time in ms per 600x600 image (including all
- pre and post-processing), but please be
- aware that these timings depend highly on one's specific hardware
- configuration (these timings were performed using an Nvidia
- GeForce GTX TITAN X card) and should be treated more as relative timings in
- many cases. Also note that desktop GPU timing does not always reflect mobile
- run time. For example Mobilenet V2 is faster on mobile devices than Mobilenet
- V1, but is slightly slower on desktop GPU.
- * detector performance on subset of the COCO validation set or Open Images test split as measured by the dataset-specific mAP measure.
- Here, higher is better, and we only report bounding box mAP rounded to the
- nearest integer.
- * Output types (`Boxes`, and `Masks` if applicable )
-
- You can un-tar each tar.gz file via, e.g.,:
-
- ```
- tar -xzvf ssd_mobilenet_v1_coco.tar.gz
- ```
-
- Inside the un-tar'ed directory, you will find:
-
- * a graph proto (`graph.pbtxt`)
- * a checkpoint
- (`model.ckpt.data-00000-of-00001`, `model.ckpt.index`, `model.ckpt.meta`)
- * a frozen graph proto with weights baked into the graph as constants
- (`frozen_inference_graph.pb`) to be used for out of the box inference
- (try this out in the Jupyter notebook!)
- * a config file (`pipeline.config`) which was used to generate the graph. These
- directly correspond to a config file in the
- [samples/configs](https://github.com/tensorflow/models/tree/master/research/object_detection/samples/configs)) directory but often with a modified score threshold. In the case
- of the heavier Faster R-CNN models, we also provide a version of the model
- that uses a highly reduced number of proposals for speed.
-
- Some remarks on frozen inference graphs:
-
- * If you try to evaluate the frozen graph, you may find performance numbers for
- some of the models to be slightly lower than what we report in the below
- tables. This is because we discard detections with scores below a
- threshold (typically 0.3) when creating the frozen graph. This corresponds
- effectively to picking a point on the precision recall curve of
- a detector (and discarding the part past that point), which negatively impacts
- standard mAP metrics.
- * Our frozen inference graphs are generated using the
- [v1.12.0](https://github.com/tensorflow/tensorflow/tree/v1.12.0)
- release version of Tensorflow and we do not guarantee that these will work
- with other versions; this being said, each frozen inference graph can be
- regenerated using your current version of Tensorflow by re-running the
- [exporter](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/exporting_models.md),
- pointing it at the model directory as well as the corresponding config file in
- [samples/configs](https://github.com/tensorflow/models/tree/master/research/object_detection/samples/configs).
-
-
- ## COCO-trained models
-
- | Model name | Speed (ms) | COCO mAP[^1] | Outputs |
- | ------------ | :--------------: | :--------------: | :-------------: |
- | [ssd_mobilenet_v1_coco](http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2018_01_28.tar.gz) | 30 | 21 | Boxes |
- | [ssd_mobilenet_v1_0.75_depth_coco ☆](http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_0.75_depth_300x300_coco14_sync_2018_07_03.tar.gz) | 26 | 18 | Boxes |
- | [ssd_mobilenet_v1_quantized_coco ☆](http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_quantized_300x300_coco14_sync_2018_07_18.tar.gz) | 29 | 18 | Boxes |
- | [ssd_mobilenet_v1_0.75_depth_quantized_coco ☆](http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_0.75_depth_quantized_300x300_coco14_sync_2018_07_18.tar.gz) | 29 | 16 | Boxes |
- | [ssd_mobilenet_v1_ppn_coco ☆](http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_ppn_shared_box_predictor_300x300_coco14_sync_2018_07_03.tar.gz) | 26 | 20 | Boxes |
- | [ssd_mobilenet_v1_fpn_coco ☆](http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_fpn_shared_box_predictor_640x640_coco14_sync_2018_07_03.tar.gz) | 56 | 32 | Boxes |
- | [ssd_resnet_50_fpn_coco ☆](http://download.tensorflow.org/models/object_detection/ssd_resnet50_v1_fpn_shared_box_predictor_640x640_coco14_sync_2018_07_03.tar.gz) | 76 | 35 | Boxes |
- | [ssd_mobilenet_v2_coco](http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v2_coco_2018_03_29.tar.gz) | 31 | 22 | Boxes |
- | [ssd_mobilenet_v2_quantized_coco](http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v2_quantized_300x300_coco_2019_01_03.tar.gz) | 29 | 22 | Boxes |
- | [ssdlite_mobilenet_v2_coco](http://download.tensorflow.org/models/object_detection/ssdlite_mobilenet_v2_coco_2018_05_09.tar.gz) | 27 | 22 | Boxes |
- | [ssd_inception_v2_coco](http://download.tensorflow.org/models/object_detection/ssd_inception_v2_coco_2018_01_28.tar.gz) | 42 | 24 | Boxes |
- | [faster_rcnn_inception_v2_coco](http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_v2_coco_2018_01_28.tar.gz) | 58 | 28 | Boxes |
- | [faster_rcnn_resnet50_coco](http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet50_coco_2018_01_28.tar.gz) | 89 | 30 | Boxes |
- | [faster_rcnn_resnet50_lowproposals_coco](http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet50_lowproposals_coco_2018_01_28.tar.gz) | 64 | | Boxes |
- | [rfcn_resnet101_coco](http://download.tensorflow.org/models/object_detection/rfcn_resnet101_coco_2018_01_28.tar.gz) | 92 | 30 | Boxes |
- | [faster_rcnn_resnet101_coco](http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_coco_2018_01_28.tar.gz) | 106 | 32 | Boxes |
- | [faster_rcnn_resnet101_lowproposals_coco](http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_lowproposals_coco_2018_01_28.tar.gz) | 82 | | Boxes |
- | [faster_rcnn_inception_resnet_v2_atrous_coco](http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_resnet_v2_atrous_coco_2018_01_28.tar.gz) | 620 | 37 | Boxes |
- | [faster_rcnn_inception_resnet_v2_atrous_lowproposals_coco](http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_resnet_v2_atrous_lowproposals_coco_2018_01_28.tar.gz) | 241 | | Boxes |
- | [faster_rcnn_nas](http://download.tensorflow.org/models/object_detection/faster_rcnn_nas_coco_2018_01_28.tar.gz) | 1833 | 43 | Boxes |
- | [faster_rcnn_nas_lowproposals_coco](http://download.tensorflow.org/models/object_detection/faster_rcnn_nas_lowproposals_coco_2018_01_28.tar.gz) | 540 | | Boxes |
- | [mask_rcnn_inception_resnet_v2_atrous_coco](http://download.tensorflow.org/models/object_detection/mask_rcnn_inception_resnet_v2_atrous_coco_2018_01_28.tar.gz) | 771 | 36 | Masks |
- | [mask_rcnn_inception_v2_coco](http://download.tensorflow.org/models/object_detection/mask_rcnn_inception_v2_coco_2018_01_28.tar.gz) | 79 | 25 | Masks |
- | [mask_rcnn_resnet101_atrous_coco](http://download.tensorflow.org/models/object_detection/mask_rcnn_resnet101_atrous_coco_2018_01_28.tar.gz) | 470 | 33 | Masks |
- | [mask_rcnn_resnet50_atrous_coco](http://download.tensorflow.org/models/object_detection/mask_rcnn_resnet50_atrous_coco_2018_01_28.tar.gz) | 343 | 29 | Masks |
-
- Note: The asterisk (☆) at the end of model name indicates that this model supports TPU training.
-
- Note: If you download the tar.gz file of quantized models and un-tar, you will get different set of files - a checkpoint, a config file and tflite frozen graphs (txt/binary).
-
- ## Kitti-trained models
-
- Model name | Speed (ms) | Pascal mAP@0.5 | Outputs
- ----------------------------------------------------------------------------------------------------------------------------------------------------------------- | :---: | :-------------: | :-----:
- [faster_rcnn_resnet101_kitti](http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_kitti_2018_01_28.tar.gz) | 79 | 87 | Boxes
-
- ## Open Images-trained models
-
- Model name | Speed (ms) | Open Images mAP@0.5[^2] | Outputs
- --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :--------: | :---------------------: | :-----:
- [faster_rcnn_inception_resnet_v2_atrous_oidv2](http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_resnet_v2_atrous_oid_2018_01_28.tar.gz) | 727 | 37 | Boxes
- [faster_rcnn_inception_resnet_v2_atrous_lowproposals_oidv2](http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_resnet_v2_atrous_lowproposals_oid_2018_01_28.tar.gz) | 347 | | Boxes
- [facessd_mobilenet_v2_quantized_open_image_v4](http://download.tensorflow.org/models/object_detection/facessd_mobilenet_v2_quantized_320x320_open_image_v4.tar.gz) [^3] | 20 | 73 (faces) | Boxes
-
- Model name | Speed (ms) | Open Images mAP@0.5[^4] | Outputs
- --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :--------: | :---------------------: | :-----:
- [faster_rcnn_inception_resnet_v2_atrous_oidv4](http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_resnet_v2_atrous_oid_v4_2018_12_12.tar.gz) | 425 | 54 | Boxes
- [ssd_mobilenetv2_oidv4](http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v2_oid_v4_2018_12_12.tar.gz) | 89 | 36 | Boxes
- [ssd_resnet_101_fpn_oidv4](http://download.tensorflow.org/models/object_detection/ssd_resnet101_v1_fpn_shared_box_predictor_oid_512x512_sync_2019_01_20.tar.gz) | 237 | 38 | Boxes
- ## iNaturalist Species-trained models
-
- Model name | Speed (ms) | Pascal mAP@0.5 | Outputs
- ----------------------------------------------------------------------------------------------------------------------------------------------------------------- | :---: | :-------------: | :-----:
- [faster_rcnn_resnet101_fgvc](http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_fgvc_2018_07_19.tar.gz) | 395 | 58 | Boxes
- [faster_rcnn_resnet50_fgvc](http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet50_fgvc_2018_07_19.tar.gz) | 366 | 55 | Boxes
-
-
- ## AVA v2.1 trained models
-
- Model name | Speed (ms) | Pascal mAP@0.5 | Outputs
- ----------------------------------------------------------------------------------------------------------------------------------------------------------------- | :---: | :-------------: | :-----:
- [faster_rcnn_resnet101_ava_v2.1](http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_ava_v2.1_2018_04_30.tar.gz) | 93 | 11 | Boxes
-
-
- [^1]: See [MSCOCO evaluation protocol](http://cocodataset.org/#detections-eval). The COCO mAP numbers here are evaluated on COCO 14 minival set (note that our split is different from COCO 17 Val). A full list of image ids used in our split could be fould [here](https://github.com/tensorflow/models/blob/master/research/object_detection/data/mscoco_minival_ids.txt).
-
-
- [^2]: This is PASCAL mAP with a slightly different way of true positives computation: see [Open Images evaluation protocols](evaluation_protocols.md), oid_V2_detection_metrics.
- [^3]: Non-face boxes are dropped during training and non-face groundtruth boxes are ignored when evaluating.
- [^4]: This is Open Images Challenge metric: see [Open Images evaluation protocols](evaluation_protocols.md), oid_challenge_detection_metrics.
-
|