- from flask import Flask, request
- from flask_restful import Resource, Api, abort
-
- import json
- import io
- import base64
- from PIL import Image
- import sys
- import datetime
- import cv2
- import ssl
- from urllib.parse import urlencode
- from urllib.request import Request, urlopen
-
-
- if sys.platform == "win32":
- import tensorflow as tf
- import numpy as np
- import pickle
-
- sys.path.insert(0, r'C:\Users\Tednokent01\Downloads\MyCity\traffic_analyzer')
- from object_detection.utils import label_map_util
-
- from object_detection.utils import visualization_utils as vis_util
-
- app = Flask(__name__)
- api = Api(app)
-
- context = ssl._create_unverified_context()
-
- score_dict = {
- 1: 1,
- 2: 1,
- 3: 1,
- 4: 1,
- 5: 1,
- 6: 1,
- 7: 1,
- 8: 1
- }
-
- with open("modules/databases/complaints.json","r") as f:
- complaints = json.load(f)
-
- if sys.platform == "win32":
- # Path to frozen detection graph. This is the actual model that is used for the object detection.
-
- # List of the strings that is used to add correct label for each box.
- PATH_TO_LABELS = 'modules/trainedModels/crack_label_map.pbtxt'
-
- NUM_CLASSES = 8
- label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
- categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
- category_index = label_map_util.create_category_index(categories)
-
- def load_image_into_numpy_array(image):
- (im_width, im_height) = image.size
- return np.array(image.getdata()).reshape(
- (im_height, im_width, 3)).astype(np.uint8)
-
- def process_img(img_base64):
-
- if sys.platform == "win32":
-
- url = 'https://127.0.0.1:5000/ai' # Set destination URL here
- post_fields = {'img': img_base64,"type":"damage"} # Set POST fields here
-
- request = Request(url, urlencode(post_fields).encode())
- img = load_image_into_numpy_array(Image.open(io.BytesIO(base64.b64decode(img_base64))))
-
- output_dict = json.loads(json.loads(urlopen(request, context=context).read()))
- print(output_dict)
- vis_util.visualize_boxes_and_labels_on_image_array(
- img,
- np.array(output_dict['detection_boxes']),
- output_dict['detection_classes'],
- output_dict['detection_scores'],
- category_index,
- instance_masks=output_dict.get('detection_masks'),
- use_normalized_coordinates=True,
- line_thickness=8,
- min_score_thresh=0.3
- )
- defects = []
- for index, i in enumerate(output_dict['detection_classes']):
- score = output_dict['detection_scores'][index]
- if score > 0.3:
- defects.append(i)
-
- priority = 0
- for i in defects:
- priority += score_dict[i]
-
- if priority > 10:
- priority = 10
-
- buffered = io.BytesIO()
- img = Image.fromarray(img, 'RGB')
- img.save(buffered, format="JPEG")
- img_str = base64.b64encode(buffered.getvalue())
- return img_str.decode("ascii"),priority,defects
-
- return img_base64, 7,["unprocessed"]
-
- class Complaint(Resource):
- def post(self):
- args = request.form.to_dict()
-
- complaint = args
-
- complaint["response"] = {"status":False}
-
- img_process,priority,tags = process_img(complaint["img"])
-
- complaint["img"] = img_process
- complaint["response"]["priority"] = str(priority)
- complaint["tags"] = list(map(str, tags))
- complaint["datetime"] = datetime.datetime.now().strftime('%b-%d-%I:%M %p-%G')
-
- try:
- complaints[complaint["id"]].append(complaint)
- except KeyError:
- complaints[complaint["id"]] = [complaint]
-
- del complaints[complaint["id"]][-1]["id"]
- with open('modules/databases/complaints.json', 'w') as complaints_file:
- json.dump(complaints, complaints_file, indent=2)
-
-
- class Complaints(Resource):
- def post(self):
- id = request.form["id"]
- return complaints[id]
-
-
- class ComplaintsUpdate(Resource):
- def get(self):
- args = request.args
- complaints[args.get("id")][int(args.get("index"))]["response"]["message"] = args.get("message")
- complaints[args["id"]][int(args["index"])]["response"]["status"] = True
- with open('modules/databases/complaints.json', 'w') as complaints_file:
- json.dump(complaints, complaints_file, indent=2)
- return
|