- import cv2
- import numpy as np
- import json
- from pysolar.solar import *
- from datetime import datetime
- from flask import Flask, request
- from flask_restful import Resource, Api, abort
- import base64
- import pickle
- from PIL import Image
- from matplotlib import pyplot as plt
- from io import BytesIO
-
- app = Flask(__name__)
- api = Api(app)
-
- def generateAvg(locs, img, avgs):
- time = datetime.strptime( "2019-04-27 17:52:00 -0300","%Y-%m-%d %H:%M:%S %z")
- altitude = int(get_altitude(39.9127938,32.8073577,time))
-
- loc_images = {}
-
- for i in locs:
- temp = locs[i]
- crop_img = img[temp["y1"]:temp["y2"], temp["x1"]:temp["x2"]]
- loc_images[i]=[crop_img]
-
-
-
- vals = {}
- if str(altitude) in avgs:
- vals = avgs[str(altitude)]
- else:
- for spot in loc_images:
- vals[spot] = loc_images[spot]
-
- for spot in loc_images:
- for col in range(len(vals[spot][0])):
- for pix in range(len(vals[spot][0][col])):
-
- vals[spot][0][col][pix] = [
- np.uint8((int(vals[spot][0][col][pix][0]) + int(loc_images[spot][0][col][pix][0]))/2),
- np.uint8((int(vals[spot][0][col][pix][1]) + int(loc_images[spot][0][col][pix][1]))/2),
- np.uint8((int(vals[spot][0][col][pix][2]) + int(loc_images[spot][0][col][pix][2]))/2)]
-
-
- for i in vals:
- vals[i] = vals[i][0].tolist()
-
- avgs[altitude] = vals
-
- return avgs
-
- def generateData(locs, img, avgs,show):
-
- time = datetime.strptime( "2019-04-27 17:52:00 -0300","%Y-%m-%d %H:%M:%S %z")
- altitude = int(get_altitude(39.9127938,32.8073577,time))
-
- loc_images = {}
- distances = {}
-
- for i in locs:
- temp = locs[i]
- crop_img = img[temp["y1"]:temp["y2"], temp["x1"]:temp["x2"]]
- loc_images[i]=[crop_img]
-
- vals = {}
-
- if str(altitude) in avgs:
-
- for spot in avgs[str(altitude)]:
- vals[spot] = np.array(avgs[str(altitude)][spot])
- else:
-
- for spot in loc_images:
- vals[spot] = loc_images[spot]
-
- for spot in loc_images:
- foo = np.zeros((len(vals[spot]),len(vals[spot][0])),dtype=int)
- distances[spot] = 0
- for col in range(len(vals[spot])):
- for pix in range(len(vals[spot][col])):
- vals[spot][col][pix] = [
- np.uint8(abs(int(vals[spot][col][pix][0]) - int(loc_images[spot][0][col][pix][0]))),
- np.uint8(abs(int(vals[spot][col][pix][1]) - int(loc_images[spot][0][col][pix][1]))),
- np.uint8(abs(int(vals[spot][col][pix][2]) - int(loc_images[spot][0][col][pix][2])))]
-
- distances[spot] += np.sum(vals[spot][col][pix])
-
- foo[col][pix] = np.max(vals[spot][col][pix])
- distances[spot] = int(distances[spot]/vals[spot].size)
- vals[spot] = foo
-
- if spot in show:
- plt.imshow(vals[spot], interpolation='nearest')
- #plt.show()
-
- return distances
-
-
- def im2str(im):
- imdata = pickle.dumps(im)
- return base64.b64encode(imdata).decode('ascii')
-
- plt.axis("off")
- with open("modules/databases/locations.json","r") as f:
- locs = json.loads(f.read())
-
- with open("modules/databases/park_data.json","r") as f:
- data = json.loads(f.read())
-
- if 0:
- ret,im = cam.read()
- data = generateAvg(locs,im,data)
-
- with open("modules/databases/park_data.json","w") as f:
- f.write(json.dumps(data,indent=2))
-
- class Empty(Resource):
- def get(self):
- image = cv2.imread("modules/lot.jpg")
- backup = image.copy()
- spot_data = generateData(locs,image,data,["0","1","2"])
- print(spot_data)
- best_spot = -1
- for loc in spot_data:
- spot_data[loc] = spot_data[loc] < 30
- color = (0,255*spot_data[loc],255*(not spot_data[loc]))
- cv2.rectangle(image,(locs[loc]["x1"],locs[loc]["y1"]),(locs[loc]["x2"],locs[loc]["y2"]),color,5)
- if spot_data[loc]:
- if best_spot == -1:
- best_spot = loc
- continue
- if locs[loc]["priority"] < locs[best_spot]["priority"]:
- best_spot = loc
- print(spot_data)
- if best_spot == -1:
- print("Sorry, no spot found :(")
- return
- else:
- print("Empty spot found at {}".format(int(best_spot) + 1))
- foo = locs[best_spot]
- crop_img = backup[foo["y1"]:foo["y2"], foo["x1"]:foo["x2"]].copy(order='C')
-
- crop_img = Image.fromarray(crop_img,"RGB")
- buffered = BytesIO()
- crop_img.save(buffered, format="JPEG")
- img = base64.b64encode(buffered.getvalue()).decode("ascii")
-
- return {"lat":foo["lat"], "lng":foo["lng"], "img":img}
-
-
-
-
-
-
-
-
-
-
-
-
|