|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Tests for eval_util."""
-
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
-
- from absl.testing import parameterized
-
- import tensorflow as tf
-
- from object_detection import eval_util
- from object_detection.core import standard_fields as fields
- from object_detection.protos import eval_pb2
- from object_detection.utils import test_case
-
-
- class EvalUtilTest(test_case.TestCase, parameterized.TestCase):
-
- def _get_categories_list(self):
- return [{'id': 1, 'name': 'person'},
- {'id': 2, 'name': 'dog'},
- {'id': 3, 'name': 'cat'}]
-
- def _make_evaluation_dict(self,
- resized_groundtruth_masks=False,
- batch_size=1,
- max_gt_boxes=None,
- scale_to_absolute=False):
- input_data_fields = fields.InputDataFields
- detection_fields = fields.DetectionResultFields
-
- image = tf.zeros(shape=[batch_size, 20, 20, 3], dtype=tf.uint8)
- if batch_size == 1:
- key = tf.constant('image1')
- else:
- key = tf.constant([str(i) for i in range(batch_size)])
- detection_boxes = tf.tile(tf.constant([[[0., 0., 1., 1.]]]),
- multiples=[batch_size, 1, 1])
- detection_scores = tf.tile(tf.constant([[0.8]]), multiples=[batch_size, 1])
- detection_classes = tf.tile(tf.constant([[0]]), multiples=[batch_size, 1])
- detection_masks = tf.tile(tf.ones(shape=[1, 1, 20, 20], dtype=tf.float32),
- multiples=[batch_size, 1, 1, 1])
- num_detections = tf.ones([batch_size])
- groundtruth_boxes = tf.constant([[0., 0., 1., 1.]])
- groundtruth_classes = tf.constant([1])
- groundtruth_instance_masks = tf.ones(shape=[1, 20, 20], dtype=tf.uint8)
- if resized_groundtruth_masks:
- groundtruth_instance_masks = tf.ones(shape=[1, 10, 10], dtype=tf.uint8)
-
- if batch_size > 1:
- groundtruth_boxes = tf.tile(tf.expand_dims(groundtruth_boxes, 0),
- multiples=[batch_size, 1, 1])
- groundtruth_classes = tf.tile(tf.expand_dims(groundtruth_classes, 0),
- multiples=[batch_size, 1])
- groundtruth_instance_masks = tf.tile(
- tf.expand_dims(groundtruth_instance_masks, 0),
- multiples=[batch_size, 1, 1, 1])
-
- detections = {
- detection_fields.detection_boxes: detection_boxes,
- detection_fields.detection_scores: detection_scores,
- detection_fields.detection_classes: detection_classes,
- detection_fields.detection_masks: detection_masks,
- detection_fields.num_detections: num_detections
- }
- groundtruth = {
- input_data_fields.groundtruth_boxes: groundtruth_boxes,
- input_data_fields.groundtruth_classes: groundtruth_classes,
- input_data_fields.groundtruth_instance_masks: groundtruth_instance_masks
- }
- if batch_size > 1:
- return eval_util.result_dict_for_batched_example(
- image, key, detections, groundtruth,
- scale_to_absolute=scale_to_absolute,
- max_gt_boxes=max_gt_boxes)
- else:
- return eval_util.result_dict_for_single_example(
- image, key, detections, groundtruth,
- scale_to_absolute=scale_to_absolute)
-
- @parameterized.parameters(
- {'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': True},
- {'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': True},
- {'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': False},
- {'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': False}
- )
- def test_get_eval_metric_ops_for_coco_detections(self, batch_size=1,
- max_gt_boxes=None,
- scale_to_absolute=False):
- eval_config = eval_pb2.EvalConfig()
- eval_config.metrics_set.extend(['coco_detection_metrics'])
- categories = self._get_categories_list()
- eval_dict = self._make_evaluation_dict(batch_size=batch_size,
- max_gt_boxes=max_gt_boxes,
- scale_to_absolute=scale_to_absolute)
- metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
- eval_config, categories, eval_dict)
- _, update_op = metric_ops['DetectionBoxes_Precision/mAP']
-
- with self.test_session() as sess:
- metrics = {}
- for key, (value_op, _) in metric_ops.iteritems():
- metrics[key] = value_op
- sess.run(update_op)
- metrics = sess.run(metrics)
- self.assertAlmostEqual(1.0, metrics['DetectionBoxes_Precision/mAP'])
- self.assertNotIn('DetectionMasks_Precision/mAP', metrics)
-
- @parameterized.parameters(
- {'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': True},
- {'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': True},
- {'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': False},
- {'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': False}
- )
- def test_get_eval_metric_ops_for_coco_detections_and_masks(
- self, batch_size=1, max_gt_boxes=None, scale_to_absolute=False):
- eval_config = eval_pb2.EvalConfig()
- eval_config.metrics_set.extend(
- ['coco_detection_metrics', 'coco_mask_metrics'])
- categories = self._get_categories_list()
- eval_dict = self._make_evaluation_dict(batch_size=batch_size,
- max_gt_boxes=max_gt_boxes,
- scale_to_absolute=scale_to_absolute)
- metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
- eval_config, categories, eval_dict)
- _, update_op_boxes = metric_ops['DetectionBoxes_Precision/mAP']
- _, update_op_masks = metric_ops['DetectionMasks_Precision/mAP']
-
- with self.test_session() as sess:
- metrics = {}
- for key, (value_op, _) in metric_ops.iteritems():
- metrics[key] = value_op
- sess.run(update_op_boxes)
- sess.run(update_op_masks)
- metrics = sess.run(metrics)
- self.assertAlmostEqual(1.0, metrics['DetectionBoxes_Precision/mAP'])
- self.assertAlmostEqual(1.0, metrics['DetectionMasks_Precision/mAP'])
-
- @parameterized.parameters(
- {'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': True},
- {'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': True},
- {'batch_size': 1, 'max_gt_boxes': None, 'scale_to_absolute': False},
- {'batch_size': 8, 'max_gt_boxes': [1], 'scale_to_absolute': False}
- )
- def test_get_eval_metric_ops_for_coco_detections_and_resized_masks(
- self, batch_size=1, max_gt_boxes=None, scale_to_absolute=False):
- eval_config = eval_pb2.EvalConfig()
- eval_config.metrics_set.extend(
- ['coco_detection_metrics', 'coco_mask_metrics'])
- categories = self._get_categories_list()
- eval_dict = self._make_evaluation_dict(batch_size=batch_size,
- max_gt_boxes=max_gt_boxes,
- scale_to_absolute=scale_to_absolute,
- resized_groundtruth_masks=True)
- metric_ops = eval_util.get_eval_metric_ops_for_evaluators(
- eval_config, categories, eval_dict)
- _, update_op_boxes = metric_ops['DetectionBoxes_Precision/mAP']
- _, update_op_masks = metric_ops['DetectionMasks_Precision/mAP']
-
- with self.test_session() as sess:
- metrics = {}
- for key, (value_op, _) in metric_ops.iteritems():
- metrics[key] = value_op
- sess.run(update_op_boxes)
- sess.run(update_op_masks)
- metrics = sess.run(metrics)
- self.assertAlmostEqual(1.0, metrics['DetectionBoxes_Precision/mAP'])
- self.assertAlmostEqual(1.0, metrics['DetectionMasks_Precision/mAP'])
-
- def test_get_eval_metric_ops_raises_error_with_unsupported_metric(self):
- eval_config = eval_pb2.EvalConfig()
- eval_config.metrics_set.extend(['unsupported_metric'])
- categories = self._get_categories_list()
- eval_dict = self._make_evaluation_dict()
- with self.assertRaises(ValueError):
- eval_util.get_eval_metric_ops_for_evaluators(
- eval_config, categories, eval_dict)
-
- def test_get_eval_metric_ops_for_evaluators(self):
- eval_config = eval_pb2.EvalConfig()
- eval_config.metrics_set.extend([
- 'coco_detection_metrics', 'coco_mask_metrics',
- 'precision_at_recall_detection_metrics'
- ])
- eval_config.include_metrics_per_category = True
- eval_config.recall_lower_bound = 0.2
- eval_config.recall_upper_bound = 0.6
-
- evaluator_options = eval_util.evaluator_options_from_eval_config(
- eval_config)
- self.assertTrue(evaluator_options['coco_detection_metrics']
- ['include_metrics_per_category'])
- self.assertTrue(
- evaluator_options['coco_mask_metrics']['include_metrics_per_category'])
- self.assertAlmostEqual(
- evaluator_options['precision_at_recall_detection_metrics']
- ['recall_lower_bound'], eval_config.recall_lower_bound)
- self.assertAlmostEqual(
- evaluator_options['precision_at_recall_detection_metrics']
- ['recall_upper_bound'], eval_config.recall_upper_bound)
-
- def test_get_evaluator_with_evaluator_options(self):
- eval_config = eval_pb2.EvalConfig()
- eval_config.metrics_set.extend(
- ['coco_detection_metrics', 'precision_at_recall_detection_metrics'])
- eval_config.include_metrics_per_category = True
- eval_config.recall_lower_bound = 0.2
- eval_config.recall_upper_bound = 0.6
- categories = self._get_categories_list()
-
- evaluator_options = eval_util.evaluator_options_from_eval_config(
- eval_config)
- evaluator = eval_util.get_evaluators(eval_config, categories,
- evaluator_options)
-
- self.assertTrue(evaluator[0]._include_metrics_per_category)
- self.assertAlmostEqual(evaluator[1]._recall_lower_bound,
- eval_config.recall_lower_bound)
- self.assertAlmostEqual(evaluator[1]._recall_upper_bound,
- eval_config.recall_upper_bound)
-
- def test_get_evaluator_with_no_evaluator_options(self):
- eval_config = eval_pb2.EvalConfig()
- eval_config.metrics_set.extend(
- ['coco_detection_metrics', 'precision_at_recall_detection_metrics'])
- eval_config.include_metrics_per_category = True
- eval_config.recall_lower_bound = 0.2
- eval_config.recall_upper_bound = 0.6
- categories = self._get_categories_list()
-
- evaluator = eval_util.get_evaluators(
- eval_config, categories, evaluator_options=None)
-
- # Even though we are setting eval_config.include_metrics_per_category = True
- # and bounds on recall, these options are never passed into the
- # DetectionEvaluator constructor (via `evaluator_options`).
- self.assertFalse(evaluator[0]._include_metrics_per_category)
- self.assertAlmostEqual(evaluator[1]._recall_lower_bound, 0.0)
- self.assertAlmostEqual(evaluator[1]._recall_upper_bound, 1.0)
-
-
- if __name__ == '__main__':
- tf.test.main()
|