|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
-
- """Argmax matcher implementation.
-
- This class takes a similarity matrix and matches columns to rows based on the
- maximum value per column. One can specify matched_thresholds and
- to prevent columns from matching to rows (generally resulting in a negative
- training example) and unmatched_theshold to ignore the match (generally
- resulting in neither a positive or negative training example).
-
- This matcher is used in Fast(er)-RCNN.
-
- Note: matchers are used in TargetAssigners. There is a create_target_assigner
- factory function for popular implementations.
- """
- import tensorflow as tf
-
- from object_detection.core import matcher
- from object_detection.utils import shape_utils
-
-
- class ArgMaxMatcher(matcher.Matcher):
- """Matcher based on highest value.
-
- This class computes matches from a similarity matrix. Each column is matched
- to a single row.
-
- To support object detection target assignment this class enables setting both
- matched_threshold (upper threshold) and unmatched_threshold (lower thresholds)
- defining three categories of similarity which define whether examples are
- positive, negative, or ignored:
- (1) similarity >= matched_threshold: Highest similarity. Matched/Positive!
- (2) matched_threshold > similarity >= unmatched_threshold: Medium similarity.
- Depending on negatives_lower_than_unmatched, this is either
- Unmatched/Negative OR Ignore.
- (3) unmatched_threshold > similarity: Lowest similarity. Depending on flag
- negatives_lower_than_unmatched, either Unmatched/Negative OR Ignore.
- For ignored matches this class sets the values in the Match object to -2.
- """
-
- def __init__(self,
- matched_threshold,
- unmatched_threshold=None,
- negatives_lower_than_unmatched=True,
- force_match_for_each_row=False,
- use_matmul_gather=False):
- """Construct ArgMaxMatcher.
-
- Args:
- matched_threshold: Threshold for positive matches. Positive if
- sim >= matched_threshold, where sim is the maximum value of the
- similarity matrix for a given column. Set to None for no threshold.
- unmatched_threshold: Threshold for negative matches. Negative if
- sim < unmatched_threshold. Defaults to matched_threshold
- when set to None.
- negatives_lower_than_unmatched: Boolean which defaults to True. If True
- then negative matches are the ones below the unmatched_threshold,
- whereas ignored matches are in between the matched and umatched
- threshold. If False, then negative matches are in between the matched
- and unmatched threshold, and everything lower than unmatched is ignored.
- force_match_for_each_row: If True, ensures that each row is matched to
- at least one column (which is not guaranteed otherwise if the
- matched_threshold is high). Defaults to False. See
- argmax_matcher_test.testMatcherForceMatch() for an example.
- use_matmul_gather: Force constructed match objects to use matrix
- multiplication based gather instead of standard tf.gather.
- (Default: False).
-
- Raises:
- ValueError: if unmatched_threshold is set but matched_threshold is not set
- or if unmatched_threshold > matched_threshold.
- """
- super(ArgMaxMatcher, self).__init__(use_matmul_gather=use_matmul_gather)
- if (matched_threshold is None) and (unmatched_threshold is not None):
- raise ValueError('Need to also define matched_threshold when'
- 'unmatched_threshold is defined')
- self._matched_threshold = matched_threshold
- if unmatched_threshold is None:
- self._unmatched_threshold = matched_threshold
- else:
- if unmatched_threshold > matched_threshold:
- raise ValueError('unmatched_threshold needs to be smaller or equal'
- 'to matched_threshold')
- self._unmatched_threshold = unmatched_threshold
- if not negatives_lower_than_unmatched:
- if self._unmatched_threshold == self._matched_threshold:
- raise ValueError('When negatives are in between matched and '
- 'unmatched thresholds, these cannot be of equal '
- 'value. matched: {}, unmatched: {}'.format(
- self._matched_threshold,
- self._unmatched_threshold))
- self._force_match_for_each_row = force_match_for_each_row
- self._negatives_lower_than_unmatched = negatives_lower_than_unmatched
-
- def _match(self, similarity_matrix, valid_rows):
- """Tries to match each column of the similarity matrix to a row.
-
- Args:
- similarity_matrix: tensor of shape [N, M] representing any similarity
- metric.
- valid_rows: a boolean tensor of shape [N] indicating valid rows.
-
- Returns:
- Match object with corresponding matches for each of M columns.
- """
-
- def _match_when_rows_are_empty():
- """Performs matching when the rows of similarity matrix are empty.
-
- When the rows are empty, all detections are false positives. So we return
- a tensor of -1's to indicate that the columns do not match to any rows.
-
- Returns:
- matches: int32 tensor indicating the row each column matches to.
- """
- similarity_matrix_shape = shape_utils.combined_static_and_dynamic_shape(
- similarity_matrix)
- return -1 * tf.ones([similarity_matrix_shape[1]], dtype=tf.int32)
-
- def _match_when_rows_are_non_empty():
- """Performs matching when the rows of similarity matrix are non empty.
-
- Returns:
- matches: int32 tensor indicating the row each column matches to.
- """
- # Matches for each column
- matches = tf.argmax(similarity_matrix, 0, output_type=tf.int32)
-
- # Deal with matched and unmatched threshold
- if self._matched_threshold is not None:
- # Get logical indices of ignored and unmatched columns as tf.int64
- matched_vals = tf.reduce_max(similarity_matrix, 0)
- below_unmatched_threshold = tf.greater(self._unmatched_threshold,
- matched_vals)
- between_thresholds = tf.logical_and(
- tf.greater_equal(matched_vals, self._unmatched_threshold),
- tf.greater(self._matched_threshold, matched_vals))
-
- if self._negatives_lower_than_unmatched:
- matches = self._set_values_using_indicator(matches,
- below_unmatched_threshold,
- -1)
- matches = self._set_values_using_indicator(matches,
- between_thresholds,
- -2)
- else:
- matches = self._set_values_using_indicator(matches,
- below_unmatched_threshold,
- -2)
- matches = self._set_values_using_indicator(matches,
- between_thresholds,
- -1)
-
- if self._force_match_for_each_row:
- similarity_matrix_shape = shape_utils.combined_static_and_dynamic_shape(
- similarity_matrix)
- force_match_column_ids = tf.argmax(similarity_matrix, 1,
- output_type=tf.int32)
- force_match_column_indicators = (
- tf.one_hot(
- force_match_column_ids, depth=similarity_matrix_shape[1]) *
- tf.cast(tf.expand_dims(valid_rows, axis=-1), dtype=tf.float32))
- force_match_row_ids = tf.argmax(force_match_column_indicators, 0,
- output_type=tf.int32)
- force_match_column_mask = tf.cast(
- tf.reduce_max(force_match_column_indicators, 0), tf.bool)
- final_matches = tf.where(force_match_column_mask,
- force_match_row_ids, matches)
- return final_matches
- else:
- return matches
-
- if similarity_matrix.shape.is_fully_defined():
- if shape_utils.get_dim_as_int(similarity_matrix.shape[0]) == 0:
- return _match_when_rows_are_empty()
- else:
- return _match_when_rows_are_non_empty()
- else:
- return tf.cond(
- tf.greater(tf.shape(similarity_matrix)[0], 0),
- _match_when_rows_are_non_empty, _match_when_rows_are_empty)
-
- def _set_values_using_indicator(self, x, indicator, val):
- """Set the indicated fields of x to val.
-
- Args:
- x: tensor.
- indicator: boolean with same shape as x.
- val: scalar with value to set.
-
- Returns:
- modified tensor.
- """
- indicator = tf.cast(indicator, x.dtype)
- return tf.add(tf.multiply(x, 1 - indicator), val * indicator)
|