|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Evaluate Object Detection result on a single image.
-
- Annotate each detected result as true positives or false positive according to
- a predefined IOU ratio. Non Maximum Supression is used by default. Multi class
- detection is supported by default.
- Based on the settings, per image evaluation is either performed on boxes or
- on object masks.
- """
- import numpy as np
-
- from object_detection.utils import np_box_list
- from object_detection.utils import np_box_list_ops
- from object_detection.utils import np_box_mask_list
- from object_detection.utils import np_box_mask_list_ops
-
-
- class PerImageEvaluation(object):
- """Evaluate detection result of a single image."""
-
- def __init__(self,
- num_groundtruth_classes,
- matching_iou_threshold=0.5,
- nms_iou_threshold=0.3,
- nms_max_output_boxes=50,
- group_of_weight=0.0):
- """Initialized PerImageEvaluation by evaluation parameters.
-
- Args:
- num_groundtruth_classes: Number of ground truth object classes
- matching_iou_threshold: A ratio of area intersection to union, which is
- the threshold to consider whether a detection is true positive or not
- nms_iou_threshold: IOU threshold used in Non Maximum Suppression.
- nms_max_output_boxes: Number of maximum output boxes in NMS.
- group_of_weight: Weight of the group-of boxes.
- """
- self.matching_iou_threshold = matching_iou_threshold
- self.nms_iou_threshold = nms_iou_threshold
- self.nms_max_output_boxes = nms_max_output_boxes
- self.num_groundtruth_classes = num_groundtruth_classes
- self.group_of_weight = group_of_weight
-
- def compute_object_detection_metrics(self,
- detected_boxes,
- detected_scores,
- detected_class_labels,
- groundtruth_boxes,
- groundtruth_class_labels,
- groundtruth_is_difficult_list,
- groundtruth_is_group_of_list,
- detected_masks=None,
- groundtruth_masks=None):
- """Evaluates detections as being tp, fp or weighted from a single image.
-
- The evaluation is done in two stages:
- 1. All detections are matched to non group-of boxes; true positives are
- determined and detections matched to difficult boxes are ignored.
- 2. Detections that are determined as false positives are matched against
- group-of boxes and weighted if matched.
-
- Args:
- detected_boxes: A float numpy array of shape [N, 4], representing N
- regions of detected object regions. Each row is of the format [y_min,
- x_min, y_max, x_max]
- detected_scores: A float numpy array of shape [N, 1], representing the
- confidence scores of the detected N object instances.
- detected_class_labels: A integer numpy array of shape [N, 1], repreneting
- the class labels of the detected N object instances.
- groundtruth_boxes: A float numpy array of shape [M, 4], representing M
- regions of object instances in ground truth
- groundtruth_class_labels: An integer numpy array of shape [M, 1],
- representing M class labels of object instances in ground truth
- groundtruth_is_difficult_list: A boolean numpy array of length M denoting
- whether a ground truth box is a difficult instance or not
- groundtruth_is_group_of_list: A boolean numpy array of length M denoting
- whether a ground truth box has group-of tag
- detected_masks: (optional) A uint8 numpy array of shape [N, height,
- width]. If not None, the metrics will be computed based on masks.
- groundtruth_masks: (optional) A uint8 numpy array of shape [M, height,
- width]. Can have empty masks, i.e. where all values are 0.
-
- Returns:
- scores: A list of C float numpy arrays. Each numpy array is of
- shape [K, 1], representing K scores detected with object class
- label c
- tp_fp_labels: A list of C boolean numpy arrays. Each numpy array
- is of shape [K, 1], representing K True/False positive label of
- object instances detected with class label c
- is_class_correctly_detected_in_image: a numpy integer array of
- shape [C, 1], indicating whether the correponding class has a least
- one instance being correctly detected in the image
- """
- detected_boxes, detected_scores, detected_class_labels, detected_masks = (
- self._remove_invalid_boxes(detected_boxes, detected_scores,
- detected_class_labels, detected_masks))
- scores, tp_fp_labels = self._compute_tp_fp(
- detected_boxes=detected_boxes,
- detected_scores=detected_scores,
- detected_class_labels=detected_class_labels,
- groundtruth_boxes=groundtruth_boxes,
- groundtruth_class_labels=groundtruth_class_labels,
- groundtruth_is_difficult_list=groundtruth_is_difficult_list,
- groundtruth_is_group_of_list=groundtruth_is_group_of_list,
- detected_masks=detected_masks,
- groundtruth_masks=groundtruth_masks)
-
- is_class_correctly_detected_in_image = self._compute_cor_loc(
- detected_boxes=detected_boxes,
- detected_scores=detected_scores,
- detected_class_labels=detected_class_labels,
- groundtruth_boxes=groundtruth_boxes,
- groundtruth_class_labels=groundtruth_class_labels,
- detected_masks=detected_masks,
- groundtruth_masks=groundtruth_masks)
-
- return scores, tp_fp_labels, is_class_correctly_detected_in_image
-
- def _compute_cor_loc(self,
- detected_boxes,
- detected_scores,
- detected_class_labels,
- groundtruth_boxes,
- groundtruth_class_labels,
- detected_masks=None,
- groundtruth_masks=None):
- """Compute CorLoc score for object detection result.
-
- Args:
- detected_boxes: A float numpy array of shape [N, 4], representing N
- regions of detected object regions. Each row is of the format [y_min,
- x_min, y_max, x_max]
- detected_scores: A float numpy array of shape [N, 1], representing the
- confidence scores of the detected N object instances.
- detected_class_labels: A integer numpy array of shape [N, 1], repreneting
- the class labels of the detected N object instances.
- groundtruth_boxes: A float numpy array of shape [M, 4], representing M
- regions of object instances in ground truth
- groundtruth_class_labels: An integer numpy array of shape [M, 1],
- representing M class labels of object instances in ground truth
- detected_masks: (optional) A uint8 numpy array of shape [N, height,
- width]. If not None, the scores will be computed based on masks.
- groundtruth_masks: (optional) A uint8 numpy array of shape [M, height,
- width].
-
- Returns:
- is_class_correctly_detected_in_image: a numpy integer array of
- shape [C, 1], indicating whether the correponding class has a least
- one instance being correctly detected in the image
-
- Raises:
- ValueError: If detected masks is not None but groundtruth masks are None,
- or the other way around.
- """
- if (detected_masks is not None and
- groundtruth_masks is None) or (detected_masks is None and
- groundtruth_masks is not None):
- raise ValueError(
- 'If `detected_masks` is provided, then `groundtruth_masks` should '
- 'also be provided.')
-
- is_class_correctly_detected_in_image = np.zeros(
- self.num_groundtruth_classes, dtype=int)
- for i in range(self.num_groundtruth_classes):
- (gt_boxes_at_ith_class, gt_masks_at_ith_class,
- detected_boxes_at_ith_class, detected_scores_at_ith_class,
- detected_masks_at_ith_class) = self._get_ith_class_arrays(
- detected_boxes, detected_scores, detected_masks,
- detected_class_labels, groundtruth_boxes, groundtruth_masks,
- groundtruth_class_labels, i)
- is_class_correctly_detected_in_image[i] = (
- self._compute_is_class_correctly_detected_in_image(
- detected_boxes=detected_boxes_at_ith_class,
- detected_scores=detected_scores_at_ith_class,
- groundtruth_boxes=gt_boxes_at_ith_class,
- detected_masks=detected_masks_at_ith_class,
- groundtruth_masks=gt_masks_at_ith_class))
-
- return is_class_correctly_detected_in_image
-
- def _compute_is_class_correctly_detected_in_image(self,
- detected_boxes,
- detected_scores,
- groundtruth_boxes,
- detected_masks=None,
- groundtruth_masks=None):
- """Compute CorLoc score for a single class.
-
- Args:
- detected_boxes: A numpy array of shape [N, 4] representing detected box
- coordinates
- detected_scores: A 1-d numpy array of length N representing classification
- score
- groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth
- box coordinates
- detected_masks: (optional) A np.uint8 numpy array of shape [N, height,
- width]. If not None, the scores will be computed based on masks.
- groundtruth_masks: (optional) A np.uint8 numpy array of shape [M, height,
- width].
-
- Returns:
- is_class_correctly_detected_in_image: An integer 1 or 0 denoting whether a
- class is correctly detected in the image or not
- """
- if detected_boxes.size > 0:
- if groundtruth_boxes.size > 0:
- max_score_id = np.argmax(detected_scores)
- mask_mode = False
- if detected_masks is not None and groundtruth_masks is not None:
- mask_mode = True
- if mask_mode:
- detected_boxlist = np_box_mask_list.BoxMaskList(
- box_data=np.expand_dims(detected_boxes[max_score_id], axis=0),
- mask_data=np.expand_dims(detected_masks[max_score_id], axis=0))
- gt_boxlist = np_box_mask_list.BoxMaskList(
- box_data=groundtruth_boxes, mask_data=groundtruth_masks)
- iou = np_box_mask_list_ops.iou(detected_boxlist, gt_boxlist)
- else:
- detected_boxlist = np_box_list.BoxList(
- np.expand_dims(detected_boxes[max_score_id, :], axis=0))
- gt_boxlist = np_box_list.BoxList(groundtruth_boxes)
- iou = np_box_list_ops.iou(detected_boxlist, gt_boxlist)
- if np.max(iou) >= self.matching_iou_threshold:
- return 1
- return 0
-
- def _compute_tp_fp(self,
- detected_boxes,
- detected_scores,
- detected_class_labels,
- groundtruth_boxes,
- groundtruth_class_labels,
- groundtruth_is_difficult_list,
- groundtruth_is_group_of_list,
- detected_masks=None,
- groundtruth_masks=None):
- """Labels true/false positives of detections of an image across all classes.
-
- Args:
- detected_boxes: A float numpy array of shape [N, 4], representing N
- regions of detected object regions. Each row is of the format [y_min,
- x_min, y_max, x_max]
- detected_scores: A float numpy array of shape [N, 1], representing the
- confidence scores of the detected N object instances.
- detected_class_labels: A integer numpy array of shape [N, 1], repreneting
- the class labels of the detected N object instances.
- groundtruth_boxes: A float numpy array of shape [M, 4], representing M
- regions of object instances in ground truth
- groundtruth_class_labels: An integer numpy array of shape [M, 1],
- representing M class labels of object instances in ground truth
- groundtruth_is_difficult_list: A boolean numpy array of length M denoting
- whether a ground truth box is a difficult instance or not
- groundtruth_is_group_of_list: A boolean numpy array of length M denoting
- whether a ground truth box has group-of tag
- detected_masks: (optional) A np.uint8 numpy array of shape [N, height,
- width]. If not None, the scores will be computed based on masks.
- groundtruth_masks: (optional) A np.uint8 numpy array of shape [M, height,
- width].
-
- Returns:
- result_scores: A list of float numpy arrays. Each numpy array is of
- shape [K, 1], representing K scores detected with object class
- label c
- result_tp_fp_labels: A list of boolean numpy array. Each numpy array is of
- shape [K, 1], representing K True/False positive label of object
- instances detected with class label c
-
- Raises:
- ValueError: If detected masks is not None but groundtruth masks are None,
- or the other way around.
- """
- if detected_masks is not None and groundtruth_masks is None:
- raise ValueError(
- 'Detected masks is available but groundtruth masks is not.')
- if detected_masks is None and groundtruth_masks is not None:
- raise ValueError(
- 'Groundtruth masks is available but detected masks is not.')
-
- result_scores = []
- result_tp_fp_labels = []
- for i in range(self.num_groundtruth_classes):
- groundtruth_is_difficult_list_at_ith_class = (
- groundtruth_is_difficult_list[groundtruth_class_labels == i])
- groundtruth_is_group_of_list_at_ith_class = (
- groundtruth_is_group_of_list[groundtruth_class_labels == i])
- (gt_boxes_at_ith_class, gt_masks_at_ith_class,
- detected_boxes_at_ith_class, detected_scores_at_ith_class,
- detected_masks_at_ith_class) = self._get_ith_class_arrays(
- detected_boxes, detected_scores, detected_masks,
- detected_class_labels, groundtruth_boxes, groundtruth_masks,
- groundtruth_class_labels, i)
- scores, tp_fp_labels = self._compute_tp_fp_for_single_class(
- detected_boxes=detected_boxes_at_ith_class,
- detected_scores=detected_scores_at_ith_class,
- groundtruth_boxes=gt_boxes_at_ith_class,
- groundtruth_is_difficult_list=groundtruth_is_difficult_list_at_ith_class,
- groundtruth_is_group_of_list=groundtruth_is_group_of_list_at_ith_class,
- detected_masks=detected_masks_at_ith_class,
- groundtruth_masks=gt_masks_at_ith_class)
- result_scores.append(scores)
- result_tp_fp_labels.append(tp_fp_labels)
- return result_scores, result_tp_fp_labels
-
- def _get_overlaps_and_scores_mask_mode(self, detected_boxes, detected_scores,
- detected_masks, groundtruth_boxes,
- groundtruth_masks,
- groundtruth_is_group_of_list):
- """Computes overlaps and scores between detected and groudntruth masks.
-
- Args:
- detected_boxes: A numpy array of shape [N, 4] representing detected box
- coordinates
- detected_scores: A 1-d numpy array of length N representing classification
- score
- detected_masks: A uint8 numpy array of shape [N, height, width]. If not
- None, the scores will be computed based on masks.
- groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth
- box coordinates
- groundtruth_masks: A uint8 numpy array of shape [M, height, width].
- groundtruth_is_group_of_list: A boolean numpy array of length M denoting
- whether a ground truth box has group-of tag. If a groundtruth box is
- group-of box, every detection matching this box is ignored.
-
- Returns:
- iou: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
- gt_non_group_of_boxlist.num_boxes() == 0 it will be None.
- ioa: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
- gt_group_of_boxlist.num_boxes() == 0 it will be None.
- scores: The score of the detected boxlist.
- num_boxes: Number of non-maximum suppressed detected boxes.
- """
- detected_boxlist = np_box_mask_list.BoxMaskList(
- box_data=detected_boxes, mask_data=detected_masks)
- detected_boxlist.add_field('scores', detected_scores)
- detected_boxlist = np_box_mask_list_ops.non_max_suppression(
- detected_boxlist, self.nms_max_output_boxes, self.nms_iou_threshold)
- gt_non_group_of_boxlist = np_box_mask_list.BoxMaskList(
- box_data=groundtruth_boxes[~groundtruth_is_group_of_list],
- mask_data=groundtruth_masks[~groundtruth_is_group_of_list])
- gt_group_of_boxlist = np_box_mask_list.BoxMaskList(
- box_data=groundtruth_boxes[groundtruth_is_group_of_list],
- mask_data=groundtruth_masks[groundtruth_is_group_of_list])
- iou = np_box_mask_list_ops.iou(detected_boxlist, gt_non_group_of_boxlist)
- ioa = np.transpose(
- np_box_mask_list_ops.ioa(gt_group_of_boxlist, detected_boxlist))
- scores = detected_boxlist.get_field('scores')
- num_boxes = detected_boxlist.num_boxes()
- return iou, ioa, scores, num_boxes
-
- def _get_overlaps_and_scores_box_mode(self, detected_boxes, detected_scores,
- groundtruth_boxes,
- groundtruth_is_group_of_list):
- """Computes overlaps and scores between detected and groudntruth boxes.
-
- Args:
- detected_boxes: A numpy array of shape [N, 4] representing detected box
- coordinates
- detected_scores: A 1-d numpy array of length N representing classification
- score
- groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth
- box coordinates
- groundtruth_is_group_of_list: A boolean numpy array of length M denoting
- whether a ground truth box has group-of tag. If a groundtruth box is
- group-of box, every detection matching this box is ignored.
-
- Returns:
- iou: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
- gt_non_group_of_boxlist.num_boxes() == 0 it will be None.
- ioa: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
- gt_group_of_boxlist.num_boxes() == 0 it will be None.
- scores: The score of the detected boxlist.
- num_boxes: Number of non-maximum suppressed detected boxes.
- """
- detected_boxlist = np_box_list.BoxList(detected_boxes)
- detected_boxlist.add_field('scores', detected_scores)
- detected_boxlist = np_box_list_ops.non_max_suppression(
- detected_boxlist, self.nms_max_output_boxes, self.nms_iou_threshold)
- gt_non_group_of_boxlist = np_box_list.BoxList(
- groundtruth_boxes[~groundtruth_is_group_of_list])
- gt_group_of_boxlist = np_box_list.BoxList(
- groundtruth_boxes[groundtruth_is_group_of_list])
- iou = np_box_list_ops.iou(detected_boxlist, gt_non_group_of_boxlist)
- ioa = np.transpose(
- np_box_list_ops.ioa(gt_group_of_boxlist, detected_boxlist))
- scores = detected_boxlist.get_field('scores')
- num_boxes = detected_boxlist.num_boxes()
- return iou, ioa, scores, num_boxes
-
- def _compute_tp_fp_for_single_class(self,
- detected_boxes,
- detected_scores,
- groundtruth_boxes,
- groundtruth_is_difficult_list,
- groundtruth_is_group_of_list,
- detected_masks=None,
- groundtruth_masks=None):
- """Labels boxes detected with the same class from the same image as tp/fp.
-
- Args:
- detected_boxes: A numpy array of shape [N, 4] representing detected box
- coordinates
- detected_scores: A 1-d numpy array of length N representing classification
- score
- groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth
- box coordinates
- groundtruth_is_difficult_list: A boolean numpy array of length M denoting
- whether a ground truth box is a difficult instance or not. If a
- groundtruth box is difficult, every detection matching this box is
- ignored.
- groundtruth_is_group_of_list: A boolean numpy array of length M denoting
- whether a ground truth box has group-of tag. If a groundtruth box is
- group-of box, every detection matching this box is ignored.
- detected_masks: (optional) A uint8 numpy array of shape [N, height,
- width]. If not None, the scores will be computed based on masks.
- groundtruth_masks: (optional) A uint8 numpy array of shape [M, height,
- width].
-
- Returns:
- Two arrays of the same size, containing all boxes that were evaluated as
- being true positives or false positives; if a box matched to a difficult
- box or to a group-of box, it is ignored.
-
- scores: A numpy array representing the detection scores.
- tp_fp_labels: a boolean numpy array indicating whether a detection is a
- true positive.
- """
- if detected_boxes.size == 0:
- return np.array([], dtype=float), np.array([], dtype=bool)
-
- mask_mode = False
- if detected_masks is not None and groundtruth_masks is not None:
- mask_mode = True
-
- iou = np.ndarray([0, 0])
- ioa = np.ndarray([0, 0])
- iou_mask = np.ndarray([0, 0])
- ioa_mask = np.ndarray([0, 0])
- if mask_mode:
- # For Instance Segmentation Evaluation on Open Images V5, not all boxed
- # instances have corresponding segmentation annotations. Those boxes that
- # dont have segmentation annotations are represented as empty masks in
- # groundtruth_masks nd array.
- mask_presence_indicator = (np.sum(groundtruth_masks, axis=(1, 2)) > 0)
-
- (iou_mask, ioa_mask, scores,
- num_detected_boxes) = self._get_overlaps_and_scores_mask_mode(
- detected_boxes=detected_boxes,
- detected_scores=detected_scores,
- detected_masks=detected_masks,
- groundtruth_boxes=groundtruth_boxes[mask_presence_indicator, :],
- groundtruth_masks=groundtruth_masks[mask_presence_indicator, :],
- groundtruth_is_group_of_list=groundtruth_is_group_of_list[
- mask_presence_indicator])
- if sum(mask_presence_indicator) < len(mask_presence_indicator):
- # Not all masks are present - some masks are empty
- (iou, ioa, _,
- num_detected_boxes) = self._get_overlaps_and_scores_box_mode(
- detected_boxes=detected_boxes,
- detected_scores=detected_scores,
- groundtruth_boxes=groundtruth_boxes[~mask_presence_indicator, :],
- groundtruth_is_group_of_list=groundtruth_is_group_of_list[
- ~mask_presence_indicator])
- num_detected_boxes = detected_boxes.shape[0]
- else:
- mask_presence_indicator = np.zeros(
- groundtruth_is_group_of_list.shape, dtype=bool)
- (iou, ioa, scores,
- num_detected_boxes) = self._get_overlaps_and_scores_box_mode(
- detected_boxes=detected_boxes,
- detected_scores=detected_scores,
- groundtruth_boxes=groundtruth_boxes,
- groundtruth_is_group_of_list=groundtruth_is_group_of_list)
-
- if groundtruth_boxes.size == 0:
- return scores, np.zeros(num_detected_boxes, dtype=bool)
-
- tp_fp_labels = np.zeros(num_detected_boxes, dtype=bool)
- is_matched_to_box = np.zeros(num_detected_boxes, dtype=bool)
- is_matched_to_difficult = np.zeros(num_detected_boxes, dtype=bool)
- is_matched_to_group_of = np.zeros(num_detected_boxes, dtype=bool)
-
- def compute_match_iou(iou, groundtruth_nongroup_of_is_difficult_list,
- is_box):
- """Computes TP/FP for non group-of box matching.
-
- The function updates the following local variables:
- tp_fp_labels - if a box is matched to group-of
- is_matched_to_difficult - the detections that were processed at this are
- matched to difficult box.
- is_matched_to_box - the detections that were processed at this stage are
- marked as is_box.
-
- Args:
- iou: intersection-over-union matrix [num_gt_boxes]x[num_det_boxes].
- groundtruth_nongroup_of_is_difficult_list: boolean that specifies if gt
- box is difficult.
- is_box: boolean that specifies if currently boxes or masks are
- processed.
- """
- max_overlap_gt_ids = np.argmax(iou, axis=1)
- is_gt_detected = np.zeros(iou.shape[1], dtype=bool)
- for i in range(num_detected_boxes):
- gt_id = max_overlap_gt_ids[i]
- is_evaluatable = (not tp_fp_labels[i] and
- not is_matched_to_difficult[i] and
- iou[i, gt_id] >= self.matching_iou_threshold and
- not is_matched_to_group_of[i])
- if is_evaluatable:
- if not groundtruth_nongroup_of_is_difficult_list[gt_id]:
- if not is_gt_detected[gt_id]:
- tp_fp_labels[i] = True
- is_gt_detected[gt_id] = True
- is_matched_to_box[i] = is_box
- else:
- is_matched_to_difficult[i] = True
-
- def compute_match_ioa(ioa, is_box):
- """Computes TP/FP for group-of box matching.
-
- The function updates the following local variables:
- is_matched_to_group_of - if a box is matched to group-of
- is_matched_to_box - the detections that were processed at this stage are
- marked as is_box.
-
- Args:
- ioa: intersection-over-area matrix [num_gt_boxes]x[num_det_boxes].
- is_box: boolean that specifies if currently boxes or masks are
- processed.
-
- Returns:
- scores_group_of: of detections matched to group-of boxes
- [num_groupof_matched].
- tp_fp_labels_group_of: boolean array of size [num_groupof_matched], all
- values are True.
- """
- scores_group_of = np.zeros(ioa.shape[1], dtype=float)
- tp_fp_labels_group_of = self.group_of_weight * np.ones(
- ioa.shape[1], dtype=float)
- max_overlap_group_of_gt_ids = np.argmax(ioa, axis=1)
- for i in range(num_detected_boxes):
- gt_id = max_overlap_group_of_gt_ids[i]
- is_evaluatable = (not tp_fp_labels[i] and
- not is_matched_to_difficult[i] and
- ioa[i, gt_id] >= self.matching_iou_threshold and
- not is_matched_to_group_of[i])
- if is_evaluatable:
- is_matched_to_group_of[i] = True
- is_matched_to_box[i] = is_box
- scores_group_of[gt_id] = max(scores_group_of[gt_id], scores[i])
- selector = np.where((scores_group_of > 0) & (tp_fp_labels_group_of > 0))
- scores_group_of = scores_group_of[selector]
- tp_fp_labels_group_of = tp_fp_labels_group_of[selector]
-
- return scores_group_of, tp_fp_labels_group_of
-
- # The evaluation is done in two stages:
- # 1. Evaluate all objects that actually have instance level masks.
- # 2. Evaluate all objects that are not already evaluated as boxes.
- if iou_mask.shape[1] > 0:
- groundtruth_is_difficult_mask_list = groundtruth_is_difficult_list[
- mask_presence_indicator]
- groundtruth_is_group_of_mask_list = groundtruth_is_group_of_list[
- mask_presence_indicator]
- compute_match_iou(
- iou_mask,
- groundtruth_is_difficult_mask_list[
- ~groundtruth_is_group_of_mask_list],
- is_box=False)
-
- scores_mask_group_of = np.ndarray([0], dtype=float)
- tp_fp_labels_mask_group_of = np.ndarray([0], dtype=float)
- if ioa_mask.shape[1] > 0:
- scores_mask_group_of, tp_fp_labels_mask_group_of = compute_match_ioa(
- ioa_mask, is_box=False)
-
- # Tp-fp evaluation for non-group of boxes (if any).
- if iou.shape[1] > 0:
- groundtruth_is_difficult_box_list = groundtruth_is_difficult_list[
- ~mask_presence_indicator]
- groundtruth_is_group_of_box_list = groundtruth_is_group_of_list[
- ~mask_presence_indicator]
- compute_match_iou(
- iou,
- groundtruth_is_difficult_box_list[~groundtruth_is_group_of_box_list],
- is_box=True)
-
- scores_box_group_of = np.ndarray([0], dtype=float)
- tp_fp_labels_box_group_of = np.ndarray([0], dtype=float)
- if ioa.shape[1] > 0:
- scores_box_group_of, tp_fp_labels_box_group_of = compute_match_ioa(
- ioa, is_box=True)
-
- if mask_mode:
- # Note: here crowds are treated as ignore regions.
- valid_entries = (~is_matched_to_difficult & ~is_matched_to_group_of
- & ~is_matched_to_box)
- return np.concatenate(
- (scores[valid_entries], scores_mask_group_of)), np.concatenate(
- (tp_fp_labels[valid_entries].astype(float),
- tp_fp_labels_mask_group_of))
- else:
- valid_entries = (~is_matched_to_difficult & ~is_matched_to_group_of)
- return np.concatenate(
- (scores[valid_entries], scores_box_group_of)), np.concatenate(
- (tp_fp_labels[valid_entries].astype(float),
- tp_fp_labels_box_group_of))
-
- def _get_ith_class_arrays(self, detected_boxes, detected_scores,
- detected_masks, detected_class_labels,
- groundtruth_boxes, groundtruth_masks,
- groundtruth_class_labels, class_index):
- """Returns numpy arrays belonging to class with index `class_index`.
-
- Args:
- detected_boxes: A numpy array containing detected boxes.
- detected_scores: A numpy array containing detected scores.
- detected_masks: A numpy array containing detected masks.
- detected_class_labels: A numpy array containing detected class labels.
- groundtruth_boxes: A numpy array containing groundtruth boxes.
- groundtruth_masks: A numpy array containing groundtruth masks.
- groundtruth_class_labels: A numpy array containing groundtruth class
- labels.
- class_index: An integer index.
-
- Returns:
- gt_boxes_at_ith_class: A numpy array containing groundtruth boxes labeled
- as ith class.
- gt_masks_at_ith_class: A numpy array containing groundtruth masks labeled
- as ith class.
- detected_boxes_at_ith_class: A numpy array containing detected boxes
- corresponding to the ith class.
- detected_scores_at_ith_class: A numpy array containing detected scores
- corresponding to the ith class.
- detected_masks_at_ith_class: A numpy array containing detected masks
- corresponding to the ith class.
- """
- selected_groundtruth = (groundtruth_class_labels == class_index)
- gt_boxes_at_ith_class = groundtruth_boxes[selected_groundtruth]
- if groundtruth_masks is not None:
- gt_masks_at_ith_class = groundtruth_masks[selected_groundtruth]
- else:
- gt_masks_at_ith_class = None
- selected_detections = (detected_class_labels == class_index)
- detected_boxes_at_ith_class = detected_boxes[selected_detections]
- detected_scores_at_ith_class = detected_scores[selected_detections]
- if detected_masks is not None:
- detected_masks_at_ith_class = detected_masks[selected_detections]
- else:
- detected_masks_at_ith_class = None
- return (gt_boxes_at_ith_class, gt_masks_at_ith_class,
- detected_boxes_at_ith_class, detected_scores_at_ith_class,
- detected_masks_at_ith_class)
-
- def _remove_invalid_boxes(self,
- detected_boxes,
- detected_scores,
- detected_class_labels,
- detected_masks=None):
- """Removes entries with invalid boxes.
-
- A box is invalid if either its xmax is smaller than its xmin, or its ymax
- is smaller than its ymin.
-
- Args:
- detected_boxes: A float numpy array of size [num_boxes, 4] containing box
- coordinates in [ymin, xmin, ymax, xmax] format.
- detected_scores: A float numpy array of size [num_boxes].
- detected_class_labels: A int32 numpy array of size [num_boxes].
- detected_masks: A uint8 numpy array of size [num_boxes, height, width].
-
- Returns:
- valid_detected_boxes: A float numpy array of size [num_valid_boxes, 4]
- containing box coordinates in [ymin, xmin, ymax, xmax] format.
- valid_detected_scores: A float numpy array of size [num_valid_boxes].
- valid_detected_class_labels: A int32 numpy array of size
- [num_valid_boxes].
- valid_detected_masks: A uint8 numpy array of size
- [num_valid_boxes, height, width].
- """
- valid_indices = np.logical_and(detected_boxes[:, 0] < detected_boxes[:, 2],
- detected_boxes[:, 1] < detected_boxes[:, 3])
- detected_boxes = detected_boxes[valid_indices]
- detected_scores = detected_scores[valid_indices]
- detected_class_labels = detected_class_labels[valid_indices]
- if detected_masks is not None:
- detected_masks = detected_masks[valid_indices]
- return [
- detected_boxes, detected_scores, detected_class_labels, detected_masks
- ]
|