|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Tensorflow Example proto parser for data loading.
-
- A parser to decode data containing serialized tensorflow.Example
- protos into materialized tensors (numpy arrays).
- """
-
- import numpy as np
-
- from object_detection.core import data_parser
- from object_detection.core import standard_fields as fields
-
-
- class FloatParser(data_parser.DataToNumpyParser):
- """Tensorflow Example float parser."""
-
- def __init__(self, field_name):
- self.field_name = field_name
-
- def parse(self, tf_example):
- return np.array(
- tf_example.features.feature[self.field_name].float_list.value,
- dtype=np.float).transpose() if tf_example.features.feature[
- self.field_name].HasField("float_list") else None
-
-
- class StringParser(data_parser.DataToNumpyParser):
- """Tensorflow Example string parser."""
-
- def __init__(self, field_name):
- self.field_name = field_name
-
- def parse(self, tf_example):
- return "".join(tf_example.features.feature[self.field_name]
- .bytes_list.value) if tf_example.features.feature[
- self.field_name].HasField("bytes_list") else None
-
-
- class Int64Parser(data_parser.DataToNumpyParser):
- """Tensorflow Example int64 parser."""
-
- def __init__(self, field_name):
- self.field_name = field_name
-
- def parse(self, tf_example):
- return np.array(
- tf_example.features.feature[self.field_name].int64_list.value,
- dtype=np.int64).transpose() if tf_example.features.feature[
- self.field_name].HasField("int64_list") else None
-
-
- class BoundingBoxParser(data_parser.DataToNumpyParser):
- """Tensorflow Example bounding box parser."""
-
- def __init__(self, xmin_field_name, ymin_field_name, xmax_field_name,
- ymax_field_name):
- self.field_names = [
- ymin_field_name, xmin_field_name, ymax_field_name, xmax_field_name
- ]
-
- def parse(self, tf_example):
- result = []
- parsed = True
- for field_name in self.field_names:
- result.append(tf_example.features.feature[field_name].float_list.value)
- parsed &= (
- tf_example.features.feature[field_name].HasField("float_list"))
-
- return np.array(result).transpose() if parsed else None
-
-
- class TfExampleDetectionAndGTParser(data_parser.DataToNumpyParser):
- """Tensorflow Example proto parser."""
-
- def __init__(self):
- self.items_to_handlers = {
- fields.DetectionResultFields.key:
- StringParser(fields.TfExampleFields.source_id),
- # Object ground truth boxes and classes.
- fields.InputDataFields.groundtruth_boxes: (BoundingBoxParser(
- fields.TfExampleFields.object_bbox_xmin,
- fields.TfExampleFields.object_bbox_ymin,
- fields.TfExampleFields.object_bbox_xmax,
- fields.TfExampleFields.object_bbox_ymax)),
- fields.InputDataFields.groundtruth_classes: (
- Int64Parser(fields.TfExampleFields.object_class_label)),
- # Object detections.
- fields.DetectionResultFields.detection_boxes: (BoundingBoxParser(
- fields.TfExampleFields.detection_bbox_xmin,
- fields.TfExampleFields.detection_bbox_ymin,
- fields.TfExampleFields.detection_bbox_xmax,
- fields.TfExampleFields.detection_bbox_ymax)),
- fields.DetectionResultFields.detection_classes: (
- Int64Parser(fields.TfExampleFields.detection_class_label)),
- fields.DetectionResultFields.detection_scores: (
- FloatParser(fields.TfExampleFields.detection_score)),
- }
-
- self.optional_items_to_handlers = {
- fields.InputDataFields.groundtruth_difficult:
- Int64Parser(fields.TfExampleFields.object_difficult),
- fields.InputDataFields.groundtruth_group_of:
- Int64Parser(fields.TfExampleFields.object_group_of),
- fields.InputDataFields.groundtruth_image_classes:
- Int64Parser(fields.TfExampleFields.image_class_label),
- }
-
- def parse(self, tf_example):
- """Parses tensorflow example and returns a tensor dictionary.
-
- Args:
- tf_example: a tf.Example object.
-
- Returns:
- A dictionary of the following numpy arrays:
- fields.DetectionResultFields.source_id - string containing original image
- id.
- fields.InputDataFields.groundtruth_boxes - a numpy array containing
- groundtruth boxes.
- fields.InputDataFields.groundtruth_classes - a numpy array containing
- groundtruth classes.
- fields.InputDataFields.groundtruth_group_of - a numpy array containing
- groundtruth group of flag (optional, None if not specified).
- fields.InputDataFields.groundtruth_difficult - a numpy array containing
- groundtruth difficult flag (optional, None if not specified).
- fields.InputDataFields.groundtruth_image_classes - a numpy array
- containing groundtruth image-level labels.
- fields.DetectionResultFields.detection_boxes - a numpy array containing
- detection boxes.
- fields.DetectionResultFields.detection_classes - a numpy array containing
- detection class labels.
- fields.DetectionResultFields.detection_scores - a numpy array containing
- detection scores.
- Returns None if tf.Example was not parsed or non-optional fields were not
- found.
- """
- results_dict = {}
- parsed = True
- for key, parser in self.items_to_handlers.items():
- results_dict[key] = parser.parse(tf_example)
- parsed &= (results_dict[key] is not None)
-
- for key, parser in self.optional_items_to_handlers.items():
- results_dict[key] = parser.parse(tf_example)
-
- return results_dict if parsed else None
|