|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Common utility functions for evaluation."""
- import collections
- import os
- import re
- import time
-
- import numpy as np
- import tensorflow as tf
-
- from object_detection.core import box_list
- from object_detection.core import box_list_ops
- from object_detection.core import keypoint_ops
- from object_detection.core import standard_fields as fields
- from object_detection.metrics import coco_evaluation
- from object_detection.utils import label_map_util
- from object_detection.utils import object_detection_evaluation
- from object_detection.utils import ops
- from object_detection.utils import shape_utils
- from object_detection.utils import visualization_utils as vis_utils
-
- slim = tf.contrib.slim
-
- # A dictionary of metric names to classes that implement the metric. The classes
- # in the dictionary must implement
- # utils.object_detection_evaluation.DetectionEvaluator interface.
- EVAL_METRICS_CLASS_DICT = {
- 'coco_detection_metrics':
- coco_evaluation.CocoDetectionEvaluator,
- 'coco_mask_metrics':
- coco_evaluation.CocoMaskEvaluator,
- 'oid_challenge_detection_metrics':
- object_detection_evaluation.OpenImagesDetectionChallengeEvaluator,
- 'oid_challenge_segmentation_metrics':
- object_detection_evaluation
- .OpenImagesInstanceSegmentationChallengeEvaluator,
- 'pascal_voc_detection_metrics':
- object_detection_evaluation.PascalDetectionEvaluator,
- 'weighted_pascal_voc_detection_metrics':
- object_detection_evaluation.WeightedPascalDetectionEvaluator,
- 'precision_at_recall_detection_metrics':
- object_detection_evaluation.PrecisionAtRecallDetectionEvaluator,
- 'pascal_voc_instance_segmentation_metrics':
- object_detection_evaluation.PascalInstanceSegmentationEvaluator,
- 'weighted_pascal_voc_instance_segmentation_metrics':
- object_detection_evaluation.WeightedPascalInstanceSegmentationEvaluator,
- 'oid_V2_detection_metrics':
- object_detection_evaluation.OpenImagesDetectionEvaluator,
- }
-
- EVAL_DEFAULT_METRIC = 'coco_detection_metrics'
-
-
- def write_metrics(metrics, global_step, summary_dir):
- """Write metrics to a summary directory.
-
- Args:
- metrics: A dictionary containing metric names and values.
- global_step: Global step at which the metrics are computed.
- summary_dir: Directory to write tensorflow summaries to.
- """
- tf.logging.info('Writing metrics to tf summary.')
- summary_writer = tf.summary.FileWriterCache.get(summary_dir)
- for key in sorted(metrics):
- summary = tf.Summary(value=[
- tf.Summary.Value(tag=key, simple_value=metrics[key]),
- ])
- summary_writer.add_summary(summary, global_step)
- tf.logging.info('%s: %f', key, metrics[key])
- tf.logging.info('Metrics written to tf summary.')
-
-
- # TODO(rathodv): Add tests.
- def visualize_detection_results(result_dict,
- tag,
- global_step,
- categories,
- summary_dir='',
- export_dir='',
- agnostic_mode=False,
- show_groundtruth=False,
- groundtruth_box_visualization_color='black',
- min_score_thresh=.5,
- max_num_predictions=20,
- skip_scores=False,
- skip_labels=False,
- keep_image_id_for_visualization_export=False):
- """Visualizes detection results and writes visualizations to image summaries.
-
- This function visualizes an image with its detected bounding boxes and writes
- to image summaries which can be viewed on tensorboard. It optionally also
- writes images to a directory. In the case of missing entry in the label map,
- unknown class name in the visualization is shown as "N/A".
-
- Args:
- result_dict: a dictionary holding groundtruth and detection
- data corresponding to each image being evaluated. The following keys
- are required:
- 'original_image': a numpy array representing the image with shape
- [1, height, width, 3] or [1, height, width, 1]
- 'detection_boxes': a numpy array of shape [N, 4]
- 'detection_scores': a numpy array of shape [N]
- 'detection_classes': a numpy array of shape [N]
- The following keys are optional:
- 'groundtruth_boxes': a numpy array of shape [N, 4]
- 'groundtruth_keypoints': a numpy array of shape [N, num_keypoints, 2]
- Detections are assumed to be provided in decreasing order of score and for
- display, and we assume that scores are probabilities between 0 and 1.
- tag: tensorboard tag (string) to associate with image.
- global_step: global step at which the visualization are generated.
- categories: a list of dictionaries representing all possible categories.
- Each dict in this list has the following keys:
- 'id': (required) an integer id uniquely identifying this category
- 'name': (required) string representing category name
- e.g., 'cat', 'dog', 'pizza'
- 'supercategory': (optional) string representing the supercategory
- e.g., 'animal', 'vehicle', 'food', etc
- summary_dir: the output directory to which the image summaries are written.
- export_dir: the output directory to which images are written. If this is
- empty (default), then images are not exported.
- agnostic_mode: boolean (default: False) controlling whether to evaluate in
- class-agnostic mode or not.
- show_groundtruth: boolean (default: False) controlling whether to show
- groundtruth boxes in addition to detected boxes
- groundtruth_box_visualization_color: box color for visualizing groundtruth
- boxes
- min_score_thresh: minimum score threshold for a box to be visualized
- max_num_predictions: maximum number of detections to visualize
- skip_scores: whether to skip score when drawing a single detection
- skip_labels: whether to skip label when drawing a single detection
- keep_image_id_for_visualization_export: whether to keep image identifier in
- filename when exported to export_dir
- Raises:
- ValueError: if result_dict does not contain the expected keys (i.e.,
- 'original_image', 'detection_boxes', 'detection_scores',
- 'detection_classes')
- """
- detection_fields = fields.DetectionResultFields
- input_fields = fields.InputDataFields
- if not set([
- input_fields.original_image,
- detection_fields.detection_boxes,
- detection_fields.detection_scores,
- detection_fields.detection_classes,
- ]).issubset(set(result_dict.keys())):
- raise ValueError('result_dict does not contain all expected keys.')
- if show_groundtruth and input_fields.groundtruth_boxes not in result_dict:
- raise ValueError('If show_groundtruth is enabled, result_dict must contain '
- 'groundtruth_boxes.')
- tf.logging.info('Creating detection visualizations.')
- category_index = label_map_util.create_category_index(categories)
-
- image = np.squeeze(result_dict[input_fields.original_image], axis=0)
- if image.shape[2] == 1: # If one channel image, repeat in RGB.
- image = np.tile(image, [1, 1, 3])
- detection_boxes = result_dict[detection_fields.detection_boxes]
- detection_scores = result_dict[detection_fields.detection_scores]
- detection_classes = np.int32((result_dict[
- detection_fields.detection_classes]))
- detection_keypoints = result_dict.get(detection_fields.detection_keypoints)
- detection_masks = result_dict.get(detection_fields.detection_masks)
- detection_boundaries = result_dict.get(detection_fields.detection_boundaries)
-
- # Plot groundtruth underneath detections
- if show_groundtruth:
- groundtruth_boxes = result_dict[input_fields.groundtruth_boxes]
- groundtruth_keypoints = result_dict.get(input_fields.groundtruth_keypoints)
- vis_utils.visualize_boxes_and_labels_on_image_array(
- image=image,
- boxes=groundtruth_boxes,
- classes=None,
- scores=None,
- category_index=category_index,
- keypoints=groundtruth_keypoints,
- use_normalized_coordinates=False,
- max_boxes_to_draw=None,
- groundtruth_box_visualization_color=groundtruth_box_visualization_color)
- vis_utils.visualize_boxes_and_labels_on_image_array(
- image,
- detection_boxes,
- detection_classes,
- detection_scores,
- category_index,
- instance_masks=detection_masks,
- instance_boundaries=detection_boundaries,
- keypoints=detection_keypoints,
- use_normalized_coordinates=False,
- max_boxes_to_draw=max_num_predictions,
- min_score_thresh=min_score_thresh,
- agnostic_mode=agnostic_mode,
- skip_scores=skip_scores,
- skip_labels=skip_labels)
-
- if export_dir:
- if keep_image_id_for_visualization_export and result_dict[fields.
- InputDataFields()
- .key]:
- export_path = os.path.join(export_dir, 'export-{}-{}.png'.format(
- tag, result_dict[fields.InputDataFields().key]))
- else:
- export_path = os.path.join(export_dir, 'export-{}.png'.format(tag))
- vis_utils.save_image_array_as_png(image, export_path)
-
- summary = tf.Summary(value=[
- tf.Summary.Value(
- tag=tag,
- image=tf.Summary.Image(
- encoded_image_string=vis_utils.encode_image_array_as_png_str(
- image)))
- ])
- summary_writer = tf.summary.FileWriterCache.get(summary_dir)
- summary_writer.add_summary(summary, global_step)
-
- tf.logging.info('Detection visualizations written to summary with tag %s.',
- tag)
-
-
- def _run_checkpoint_once(tensor_dict,
- evaluators=None,
- batch_processor=None,
- checkpoint_dirs=None,
- variables_to_restore=None,
- restore_fn=None,
- num_batches=1,
- master='',
- save_graph=False,
- save_graph_dir='',
- losses_dict=None,
- eval_export_path=None,
- process_metrics_fn=None):
- """Evaluates metrics defined in evaluators and returns summaries.
-
- This function loads the latest checkpoint in checkpoint_dirs and evaluates
- all metrics defined in evaluators. The metrics are processed in batch by the
- batch_processor.
-
- Args:
- tensor_dict: a dictionary holding tensors representing a batch of detections
- and corresponding groundtruth annotations.
- evaluators: a list of object of type DetectionEvaluator to be used for
- evaluation. Note that the metric names produced by different evaluators
- must be unique.
- batch_processor: a function taking four arguments:
- 1. tensor_dict: the same tensor_dict that is passed in as the first
- argument to this function.
- 2. sess: a tensorflow session
- 3. batch_index: an integer representing the index of the batch amongst
- all batches
- By default, batch_processor is None, which defaults to running:
- return sess.run(tensor_dict)
- To skip an image, it suffices to return an empty dictionary in place of
- result_dict.
- checkpoint_dirs: list of directories to load into an EnsembleModel. If it
- has only one directory, EnsembleModel will not be used --
- a DetectionModel
- will be instantiated directly. Not used if restore_fn is set.
- variables_to_restore: None, or a dictionary mapping variable names found in
- a checkpoint to model variables. The dictionary would normally be
- generated by creating a tf.train.ExponentialMovingAverage object and
- calling its variables_to_restore() method. Not used if restore_fn is set.
- restore_fn: None, or a function that takes a tf.Session object and correctly
- restores all necessary variables from the correct checkpoint file. If
- None, attempts to restore from the first directory in checkpoint_dirs.
- num_batches: the number of batches to use for evaluation.
- master: the location of the Tensorflow session.
- save_graph: whether or not the Tensorflow graph is stored as a pbtxt file.
- save_graph_dir: where to store the Tensorflow graph on disk. If save_graph
- is True this must be non-empty.
- losses_dict: optional dictionary of scalar detection losses.
- eval_export_path: Path for saving a json file that contains the detection
- results in json format.
- process_metrics_fn: a callback called with evaluation results after each
- evaluation is done. It could be used e.g. to back up checkpoints with
- best evaluation scores, or to call an external system to update evaluation
- results in order to drive best hyper-parameter search. Parameters are:
- int checkpoint_number, Dict[str, ObjectDetectionEvalMetrics] metrics,
- str checkpoint_file path.
-
- Returns:
- global_step: the count of global steps.
- all_evaluator_metrics: A dictionary containing metric names and values.
-
- Raises:
- ValueError: if restore_fn is None and checkpoint_dirs doesn't have at least
- one element.
- ValueError: if save_graph is True and save_graph_dir is not defined.
- """
- if save_graph and not save_graph_dir:
- raise ValueError('`save_graph_dir` must be defined.')
- sess = tf.Session(master, graph=tf.get_default_graph())
- sess.run(tf.global_variables_initializer())
- sess.run(tf.local_variables_initializer())
- sess.run(tf.tables_initializer())
- checkpoint_file = None
- if restore_fn:
- restore_fn(sess)
- else:
- if not checkpoint_dirs:
- raise ValueError('`checkpoint_dirs` must have at least one entry.')
- checkpoint_file = tf.train.latest_checkpoint(checkpoint_dirs[0])
- saver = tf.train.Saver(variables_to_restore)
- saver.restore(sess, checkpoint_file)
-
- if save_graph:
- tf.train.write_graph(sess.graph_def, save_graph_dir, 'eval.pbtxt')
-
- counters = {'skipped': 0, 'success': 0}
- aggregate_result_losses_dict = collections.defaultdict(list)
- with tf.contrib.slim.queues.QueueRunners(sess):
- try:
- for batch in range(int(num_batches)):
- if (batch + 1) % 100 == 0:
- tf.logging.info('Running eval ops batch %d/%d', batch + 1,
- num_batches)
- if not batch_processor:
- try:
- if not losses_dict:
- losses_dict = {}
- result_dict, result_losses_dict = sess.run([tensor_dict,
- losses_dict])
- counters['success'] += 1
- except tf.errors.InvalidArgumentError:
- tf.logging.info('Skipping image')
- counters['skipped'] += 1
- result_dict = {}
- else:
- result_dict, result_losses_dict = batch_processor(
- tensor_dict, sess, batch, counters, losses_dict=losses_dict)
- if not result_dict:
- continue
- for key, value in iter(result_losses_dict.items()):
- aggregate_result_losses_dict[key].append(value)
- for evaluator in evaluators:
- # TODO(b/65130867): Use image_id tensor once we fix the input data
- # decoders to return correct image_id.
- # TODO(akuznetsa): result_dict contains batches of images, while
- # add_single_ground_truth_image_info expects a single image. Fix
- if (isinstance(result_dict, dict) and
- fields.InputDataFields.key in result_dict and
- result_dict[fields.InputDataFields.key]):
- image_id = result_dict[fields.InputDataFields.key]
- else:
- image_id = batch
- evaluator.add_single_ground_truth_image_info(
- image_id=image_id, groundtruth_dict=result_dict)
- evaluator.add_single_detected_image_info(
- image_id=image_id, detections_dict=result_dict)
- tf.logging.info('Running eval batches done.')
- except tf.errors.OutOfRangeError:
- tf.logging.info('Done evaluating -- epoch limit reached')
- finally:
- # When done, ask the threads to stop.
- tf.logging.info('# success: %d', counters['success'])
- tf.logging.info('# skipped: %d', counters['skipped'])
- all_evaluator_metrics = {}
- if eval_export_path and eval_export_path is not None:
- for evaluator in evaluators:
- if (isinstance(evaluator, coco_evaluation.CocoDetectionEvaluator) or
- isinstance(evaluator, coco_evaluation.CocoMaskEvaluator)):
- tf.logging.info('Started dumping to json file.')
- evaluator.dump_detections_to_json_file(
- json_output_path=eval_export_path)
- tf.logging.info('Finished dumping to json file.')
- for evaluator in evaluators:
- metrics = evaluator.evaluate()
- evaluator.clear()
- if any(key in all_evaluator_metrics for key in metrics):
- raise ValueError('Metric names between evaluators must not collide.')
- all_evaluator_metrics.update(metrics)
- global_step = tf.train.global_step(sess, tf.train.get_global_step())
-
- for key, value in iter(aggregate_result_losses_dict.items()):
- all_evaluator_metrics['Losses/' + key] = np.mean(value)
- if process_metrics_fn and checkpoint_file:
- m = re.search(r'model.ckpt-(\d+)$', checkpoint_file)
- if not m:
- tf.logging.error('Failed to parse checkpoint number from: %s',
- checkpoint_file)
- else:
- checkpoint_number = int(m.group(1))
- process_metrics_fn(checkpoint_number, all_evaluator_metrics,
- checkpoint_file)
- sess.close()
- return (global_step, all_evaluator_metrics)
-
-
- # TODO(rathodv): Add tests.
- def repeated_checkpoint_run(tensor_dict,
- summary_dir,
- evaluators,
- batch_processor=None,
- checkpoint_dirs=None,
- variables_to_restore=None,
- restore_fn=None,
- num_batches=1,
- eval_interval_secs=120,
- max_number_of_evaluations=None,
- max_evaluation_global_step=None,
- master='',
- save_graph=False,
- save_graph_dir='',
- losses_dict=None,
- eval_export_path=None,
- process_metrics_fn=None):
- """Periodically evaluates desired tensors using checkpoint_dirs or restore_fn.
-
- This function repeatedly loads a checkpoint and evaluates a desired
- set of tensors (provided by tensor_dict) and hands the resulting numpy
- arrays to a function result_processor which can be used to further
- process/save/visualize the results.
-
- Args:
- tensor_dict: a dictionary holding tensors representing a batch of detections
- and corresponding groundtruth annotations.
- summary_dir: a directory to write metrics summaries.
- evaluators: a list of object of type DetectionEvaluator to be used for
- evaluation. Note that the metric names produced by different evaluators
- must be unique.
- batch_processor: a function taking three arguments:
- 1. tensor_dict: the same tensor_dict that is passed in as the first
- argument to this function.
- 2. sess: a tensorflow session
- 3. batch_index: an integer representing the index of the batch amongst
- all batches
- By default, batch_processor is None, which defaults to running:
- return sess.run(tensor_dict)
- checkpoint_dirs: list of directories to load into a DetectionModel or an
- EnsembleModel if restore_fn isn't set. Also used to determine when to run
- next evaluation. Must have at least one element.
- variables_to_restore: None, or a dictionary mapping variable names found in
- a checkpoint to model variables. The dictionary would normally be
- generated by creating a tf.train.ExponentialMovingAverage object and
- calling its variables_to_restore() method. Not used if restore_fn is set.
- restore_fn: a function that takes a tf.Session object and correctly restores
- all necessary variables from the correct checkpoint file.
- num_batches: the number of batches to use for evaluation.
- eval_interval_secs: the number of seconds between each evaluation run.
- max_number_of_evaluations: the max number of iterations of the evaluation.
- If the value is left as None the evaluation continues indefinitely.
- max_evaluation_global_step: global step when evaluation stops.
- master: the location of the Tensorflow session.
- save_graph: whether or not the Tensorflow graph is saved as a pbtxt file.
- save_graph_dir: where to save on disk the Tensorflow graph. If store_graph
- is True this must be non-empty.
- losses_dict: optional dictionary of scalar detection losses.
- eval_export_path: Path for saving a json file that contains the detection
- results in json format.
- process_metrics_fn: a callback called with evaluation results after each
- evaluation is done. It could be used e.g. to back up checkpoints with
- best evaluation scores, or to call an external system to update evaluation
- results in order to drive best hyper-parameter search. Parameters are:
- int checkpoint_number, Dict[str, ObjectDetectionEvalMetrics] metrics,
- str checkpoint_file path.
-
- Returns:
- metrics: A dictionary containing metric names and values in the latest
- evaluation.
-
- Raises:
- ValueError: if max_num_of_evaluations is not None or a positive number.
- ValueError: if checkpoint_dirs doesn't have at least one element.
- """
- if max_number_of_evaluations and max_number_of_evaluations <= 0:
- raise ValueError(
- '`max_number_of_evaluations` must be either None or a positive number.')
- if max_evaluation_global_step and max_evaluation_global_step <= 0:
- raise ValueError(
- '`max_evaluation_global_step` must be either None or positive.')
-
- if not checkpoint_dirs:
- raise ValueError('`checkpoint_dirs` must have at least one entry.')
-
- last_evaluated_model_path = None
- number_of_evaluations = 0
- while True:
- start = time.time()
- tf.logging.info('Starting evaluation at ' + time.strftime(
- '%Y-%m-%d-%H:%M:%S', time.gmtime()))
- model_path = tf.train.latest_checkpoint(checkpoint_dirs[0])
- if not model_path:
- tf.logging.info('No model found in %s. Will try again in %d seconds',
- checkpoint_dirs[0], eval_interval_secs)
- elif model_path == last_evaluated_model_path:
- tf.logging.info('Found already evaluated checkpoint. Will try again in '
- '%d seconds', eval_interval_secs)
- else:
- last_evaluated_model_path = model_path
- global_step, metrics = _run_checkpoint_once(
- tensor_dict,
- evaluators,
- batch_processor,
- checkpoint_dirs,
- variables_to_restore,
- restore_fn,
- num_batches,
- master,
- save_graph,
- save_graph_dir,
- losses_dict=losses_dict,
- eval_export_path=eval_export_path,
- process_metrics_fn=process_metrics_fn)
- write_metrics(metrics, global_step, summary_dir)
- if (max_evaluation_global_step and
- global_step >= max_evaluation_global_step):
- tf.logging.info('Finished evaluation!')
- break
- number_of_evaluations += 1
-
- if (max_number_of_evaluations and
- number_of_evaluations >= max_number_of_evaluations):
- tf.logging.info('Finished evaluation!')
- break
- time_to_next_eval = start + eval_interval_secs - time.time()
- if time_to_next_eval > 0:
- time.sleep(time_to_next_eval)
-
- return metrics
-
-
- def _scale_box_to_absolute(args):
- boxes, image_shape = args
- return box_list_ops.to_absolute_coordinates(
- box_list.BoxList(boxes), image_shape[0], image_shape[1]).get()
-
-
- def _resize_detection_masks(args):
- detection_boxes, detection_masks, image_shape = args
- detection_masks_reframed = ops.reframe_box_masks_to_image_masks(
- detection_masks, detection_boxes, image_shape[0], image_shape[1])
- return tf.cast(tf.greater(detection_masks_reframed, 0.5), tf.uint8)
-
-
- def _resize_groundtruth_masks(args):
- mask, image_shape = args
- mask = tf.expand_dims(mask, 3)
- mask = tf.image.resize_images(
- mask,
- image_shape,
- method=tf.image.ResizeMethod.NEAREST_NEIGHBOR,
- align_corners=True)
- return tf.cast(tf.squeeze(mask, 3), tf.uint8)
-
-
- def _scale_keypoint_to_absolute(args):
- keypoints, image_shape = args
- return keypoint_ops.scale(keypoints, image_shape[0], image_shape[1])
-
-
- def result_dict_for_single_example(image,
- key,
- detections,
- groundtruth=None,
- class_agnostic=False,
- scale_to_absolute=False):
- """Merges all detection and groundtruth information for a single example.
-
- Note that evaluation tools require classes that are 1-indexed, and so this
- function performs the offset. If `class_agnostic` is True, all output classes
- have label 1.
-
- Args:
- image: A single 4D uint8 image tensor of shape [1, H, W, C].
- key: A single string tensor identifying the image.
- detections: A dictionary of detections, returned from
- DetectionModel.postprocess().
- groundtruth: (Optional) Dictionary of groundtruth items, with fields:
- 'groundtruth_boxes': [num_boxes, 4] float32 tensor of boxes, in
- normalized coordinates.
- 'groundtruth_classes': [num_boxes] int64 tensor of 1-indexed classes.
- 'groundtruth_area': [num_boxes] float32 tensor of bbox area. (Optional)
- 'groundtruth_is_crowd': [num_boxes] int64 tensor. (Optional)
- 'groundtruth_difficult': [num_boxes] int64 tensor. (Optional)
- 'groundtruth_group_of': [num_boxes] int64 tensor. (Optional)
- 'groundtruth_instance_masks': 3D int64 tensor of instance masks
- (Optional).
- class_agnostic: Boolean indicating whether the detections are class-agnostic
- (i.e. binary). Default False.
- scale_to_absolute: Boolean indicating whether boxes and keypoints should be
- scaled to absolute coordinates. Note that for IoU based evaluations, it
- does not matter whether boxes are expressed in absolute or relative
- coordinates. Default False.
-
- Returns:
- A dictionary with:
- 'original_image': A [1, H, W, C] uint8 image tensor.
- 'key': A string tensor with image identifier.
- 'detection_boxes': [max_detections, 4] float32 tensor of boxes, in
- normalized or absolute coordinates, depending on the value of
- `scale_to_absolute`.
- 'detection_scores': [max_detections] float32 tensor of scores.
- 'detection_classes': [max_detections] int64 tensor of 1-indexed classes.
- 'detection_masks': [max_detections, H, W] float32 tensor of binarized
- masks, reframed to full image masks.
- 'groundtruth_boxes': [num_boxes, 4] float32 tensor of boxes, in
- normalized or absolute coordinates, depending on the value of
- `scale_to_absolute`. (Optional)
- 'groundtruth_classes': [num_boxes] int64 tensor of 1-indexed classes.
- (Optional)
- 'groundtruth_area': [num_boxes] float32 tensor of bbox area. (Optional)
- 'groundtruth_is_crowd': [num_boxes] int64 tensor. (Optional)
- 'groundtruth_difficult': [num_boxes] int64 tensor. (Optional)
- 'groundtruth_group_of': [num_boxes] int64 tensor. (Optional)
- 'groundtruth_instance_masks': 3D int64 tensor of instance masks
- (Optional).
-
- """
-
- if groundtruth:
- max_gt_boxes = tf.shape(
- groundtruth[fields.InputDataFields.groundtruth_boxes])[0]
- for gt_key in groundtruth:
- # expand groundtruth dict along the batch dimension.
- groundtruth[gt_key] = tf.expand_dims(groundtruth[gt_key], 0)
-
- for detection_key in detections:
- detections[detection_key] = tf.expand_dims(
- detections[detection_key][0], axis=0)
-
- batched_output_dict = result_dict_for_batched_example(
- image,
- tf.expand_dims(key, 0),
- detections,
- groundtruth,
- class_agnostic,
- scale_to_absolute,
- max_gt_boxes=max_gt_boxes)
-
- exclude_keys = [
- fields.InputDataFields.original_image,
- fields.DetectionResultFields.num_detections,
- fields.InputDataFields.num_groundtruth_boxes
- ]
-
- output_dict = {
- fields.InputDataFields.original_image:
- batched_output_dict[fields.InputDataFields.original_image]
- }
-
- for key in batched_output_dict:
- # remove the batch dimension.
- if key not in exclude_keys:
- output_dict[key] = tf.squeeze(batched_output_dict[key], 0)
- return output_dict
-
-
- def result_dict_for_batched_example(images,
- keys,
- detections,
- groundtruth=None,
- class_agnostic=False,
- scale_to_absolute=False,
- original_image_spatial_shapes=None,
- true_image_shapes=None,
- max_gt_boxes=None):
- """Merges all detection and groundtruth information for a single example.
-
- Note that evaluation tools require classes that are 1-indexed, and so this
- function performs the offset. If `class_agnostic` is True, all output classes
- have label 1.
-
- Args:
- images: A single 4D uint8 image tensor of shape [batch_size, H, W, C].
- keys: A [batch_size] string tensor with image identifier.
- detections: A dictionary of detections, returned from
- DetectionModel.postprocess().
- groundtruth: (Optional) Dictionary of groundtruth items, with fields:
- 'groundtruth_boxes': [batch_size, max_number_of_boxes, 4] float32 tensor
- of boxes, in normalized coordinates.
- 'groundtruth_classes': [batch_size, max_number_of_boxes] int64 tensor of
- 1-indexed classes.
- 'groundtruth_area': [batch_size, max_number_of_boxes] float32 tensor of
- bbox area. (Optional)
- 'groundtruth_is_crowd':[batch_size, max_number_of_boxes] int64
- tensor. (Optional)
- 'groundtruth_difficult': [batch_size, max_number_of_boxes] int64
- tensor. (Optional)
- 'groundtruth_group_of': [batch_size, max_number_of_boxes] int64
- tensor. (Optional)
- 'groundtruth_instance_masks': 4D int64 tensor of instance
- masks (Optional).
- class_agnostic: Boolean indicating whether the detections are class-agnostic
- (i.e. binary). Default False.
- scale_to_absolute: Boolean indicating whether boxes and keypoints should be
- scaled to absolute coordinates. Note that for IoU based evaluations, it
- does not matter whether boxes are expressed in absolute or relative
- coordinates. Default False.
- original_image_spatial_shapes: A 2D int32 tensor of shape [batch_size, 2]
- used to resize the image. When set to None, the image size is retained.
- true_image_shapes: A 2D int32 tensor of shape [batch_size, 3]
- containing the size of the unpadded original_image.
- max_gt_boxes: [batch_size] tensor representing the maximum number of
- groundtruth boxes to pad.
-
- Returns:
- A dictionary with:
- 'original_image': A [batch_size, H, W, C] uint8 image tensor.
- 'original_image_spatial_shape': A [batch_size, 2] tensor containing the
- original image sizes.
- 'true_image_shape': A [batch_size, 3] tensor containing the size of
- the unpadded original_image.
- 'key': A [batch_size] string tensor with image identifier.
- 'detection_boxes': [batch_size, max_detections, 4] float32 tensor of boxes,
- in normalized or absolute coordinates, depending on the value of
- `scale_to_absolute`.
- 'detection_scores': [batch_size, max_detections] float32 tensor of scores.
- 'detection_classes': [batch_size, max_detections] int64 tensor of 1-indexed
- classes.
- 'detection_masks': [batch_size, max_detections, H, W] float32 tensor of
- binarized masks, reframed to full image masks.
- 'num_detections': [batch_size] int64 tensor containing number of valid
- detections.
- 'groundtruth_boxes': [batch_size, num_boxes, 4] float32 tensor of boxes, in
- normalized or absolute coordinates, depending on the value of
- `scale_to_absolute`. (Optional)
- 'groundtruth_classes': [batch_size, num_boxes] int64 tensor of 1-indexed
- classes. (Optional)
- 'groundtruth_area': [batch_size, num_boxes] float32 tensor of bbox
- area. (Optional)
- 'groundtruth_is_crowd': [batch_size, num_boxes] int64 tensor. (Optional)
- 'groundtruth_difficult': [batch_size, num_boxes] int64 tensor. (Optional)
- 'groundtruth_group_of': [batch_size, num_boxes] int64 tensor. (Optional)
- 'groundtruth_instance_masks': 4D int64 tensor of instance masks
- (Optional).
- 'num_groundtruth_boxes': [batch_size] tensor containing the maximum number
- of groundtruth boxes per image.
-
- Raises:
- ValueError: if original_image_spatial_shape is not 2D int32 tensor of shape
- [2].
- ValueError: if true_image_shapes is not 2D int32 tensor of shape
- [3].
- """
- label_id_offset = 1 # Applying label id offset (b/63711816)
-
- input_data_fields = fields.InputDataFields
- if original_image_spatial_shapes is None:
- original_image_spatial_shapes = tf.tile(
- tf.expand_dims(tf.shape(images)[1:3], axis=0),
- multiples=[tf.shape(images)[0], 1])
- else:
- if (len(original_image_spatial_shapes.shape) != 2 and
- original_image_spatial_shapes.shape[1] != 2):
- raise ValueError(
- '`original_image_spatial_shape` should be a 2D tensor of shape '
- '[batch_size, 2].')
-
- if true_image_shapes is None:
- true_image_shapes = tf.tile(
- tf.expand_dims(tf.shape(images)[1:4], axis=0),
- multiples=[tf.shape(images)[0], 1])
- else:
- if (len(true_image_shapes.shape) != 2
- and true_image_shapes.shape[1] != 3):
- raise ValueError('`true_image_shapes` should be a 2D tensor of '
- 'shape [batch_size, 3].')
-
- output_dict = {
- input_data_fields.original_image:
- images,
- input_data_fields.key:
- keys,
- input_data_fields.original_image_spatial_shape: (
- original_image_spatial_shapes),
- input_data_fields.true_image_shape:
- true_image_shapes
- }
-
- detection_fields = fields.DetectionResultFields
- detection_boxes = detections[detection_fields.detection_boxes]
- detection_scores = detections[detection_fields.detection_scores]
- num_detections = tf.cast(detections[detection_fields.num_detections],
- dtype=tf.int32)
-
- if class_agnostic:
- detection_classes = tf.ones_like(detection_scores, dtype=tf.int64)
- else:
- detection_classes = (
- tf.to_int64(detections[detection_fields.detection_classes]) +
- label_id_offset)
-
- if scale_to_absolute:
- output_dict[detection_fields.detection_boxes] = (
- shape_utils.static_or_dynamic_map_fn(
- _scale_box_to_absolute,
- elems=[detection_boxes, original_image_spatial_shapes],
- dtype=tf.float32))
- else:
- output_dict[detection_fields.detection_boxes] = detection_boxes
- output_dict[detection_fields.detection_classes] = detection_classes
- output_dict[detection_fields.detection_scores] = detection_scores
- output_dict[detection_fields.num_detections] = num_detections
-
- if detection_fields.detection_masks in detections:
- detection_masks = detections[detection_fields.detection_masks]
- # TODO(rathodv): This should be done in model's postprocess
- # function ideally.
- output_dict[detection_fields.detection_masks] = (
- shape_utils.static_or_dynamic_map_fn(
- _resize_detection_masks,
- elems=[detection_boxes, detection_masks,
- original_image_spatial_shapes],
- dtype=tf.uint8))
-
- if detection_fields.detection_keypoints in detections:
- detection_keypoints = detections[detection_fields.detection_keypoints]
- output_dict[detection_fields.detection_keypoints] = detection_keypoints
- if scale_to_absolute:
- output_dict[detection_fields.detection_keypoints] = (
- shape_utils.static_or_dynamic_map_fn(
- _scale_keypoint_to_absolute,
- elems=[detection_keypoints, original_image_spatial_shapes],
- dtype=tf.float32))
-
- if groundtruth:
- if max_gt_boxes is None:
- if input_data_fields.num_groundtruth_boxes in groundtruth:
- max_gt_boxes = groundtruth[input_data_fields.num_groundtruth_boxes]
- else:
- raise ValueError(
- 'max_gt_boxes must be provided when processing batched examples.')
-
- if input_data_fields.groundtruth_instance_masks in groundtruth:
- masks = groundtruth[input_data_fields.groundtruth_instance_masks]
- groundtruth[input_data_fields.groundtruth_instance_masks] = (
- shape_utils.static_or_dynamic_map_fn(
- _resize_groundtruth_masks,
- elems=[masks, original_image_spatial_shapes],
- dtype=tf.uint8))
-
- output_dict.update(groundtruth)
- if scale_to_absolute:
- groundtruth_boxes = groundtruth[input_data_fields.groundtruth_boxes]
- output_dict[input_data_fields.groundtruth_boxes] = (
- shape_utils.static_or_dynamic_map_fn(
- _scale_box_to_absolute,
- elems=[groundtruth_boxes, original_image_spatial_shapes],
- dtype=tf.float32))
-
- # For class-agnostic models, groundtruth classes all become 1.
- if class_agnostic:
- groundtruth_classes = groundtruth[input_data_fields.groundtruth_classes]
- groundtruth_classes = tf.ones_like(groundtruth_classes, dtype=tf.int64)
- output_dict[input_data_fields.groundtruth_classes] = groundtruth_classes
-
- output_dict[input_data_fields.num_groundtruth_boxes] = max_gt_boxes
-
- return output_dict
-
-
- def get_evaluators(eval_config, categories, evaluator_options=None):
- """Returns the evaluator class according to eval_config, valid for categories.
-
- Args:
- eval_config: An `eval_pb2.EvalConfig`.
- categories: A list of dicts, each of which has the following keys -
- 'id': (required) an integer id uniquely identifying this category.
- 'name': (required) string representing category name e.g., 'cat', 'dog'.
- evaluator_options: A dictionary of metric names (see
- EVAL_METRICS_CLASS_DICT) to `DetectionEvaluator` initialization
- keyword arguments. For example:
- evalator_options = {
- 'coco_detection_metrics': {'include_metrics_per_category': True}
- }
-
- Returns:
- An list of instances of DetectionEvaluator.
-
- Raises:
- ValueError: if metric is not in the metric class dictionary.
- """
- evaluator_options = evaluator_options or {}
- eval_metric_fn_keys = eval_config.metrics_set
- if not eval_metric_fn_keys:
- eval_metric_fn_keys = [EVAL_DEFAULT_METRIC]
- evaluators_list = []
- for eval_metric_fn_key in eval_metric_fn_keys:
- if eval_metric_fn_key not in EVAL_METRICS_CLASS_DICT:
- raise ValueError('Metric not found: {}'.format(eval_metric_fn_key))
- kwargs_dict = (evaluator_options[eval_metric_fn_key] if eval_metric_fn_key
- in evaluator_options else {})
- evaluators_list.append(EVAL_METRICS_CLASS_DICT[eval_metric_fn_key](
- categories,
- **kwargs_dict))
- return evaluators_list
-
-
- def get_eval_metric_ops_for_evaluators(eval_config,
- categories,
- eval_dict):
- """Returns eval metrics ops to use with `tf.estimator.EstimatorSpec`.
-
- Args:
- eval_config: An `eval_pb2.EvalConfig`.
- categories: A list of dicts, each of which has the following keys -
- 'id': (required) an integer id uniquely identifying this category.
- 'name': (required) string representing category name e.g., 'cat', 'dog'.
- eval_dict: An evaluation dictionary, returned from
- result_dict_for_single_example().
-
- Returns:
- A dictionary of metric names to tuple of value_op and update_op that can be
- used as eval metric ops in tf.EstimatorSpec.
- """
- eval_metric_ops = {}
- evaluator_options = evaluator_options_from_eval_config(eval_config)
- evaluators_list = get_evaluators(eval_config, categories, evaluator_options)
- for evaluator in evaluators_list:
- eval_metric_ops.update(evaluator.get_estimator_eval_metric_ops(
- eval_dict))
- return eval_metric_ops
-
-
- def evaluator_options_from_eval_config(eval_config):
- """Produces a dictionary of evaluation options for each eval metric.
-
- Args:
- eval_config: An `eval_pb2.EvalConfig`.
-
- Returns:
- evaluator_options: A dictionary of metric names (see
- EVAL_METRICS_CLASS_DICT) to `DetectionEvaluator` initialization
- keyword arguments. For example:
- evalator_options = {
- 'coco_detection_metrics': {'include_metrics_per_category': True}
- }
- """
- eval_metric_fn_keys = eval_config.metrics_set
- evaluator_options = {}
- for eval_metric_fn_key in eval_metric_fn_keys:
- if eval_metric_fn_key in ('coco_detection_metrics', 'coco_mask_metrics'):
- evaluator_options[eval_metric_fn_key] = {
- 'include_metrics_per_category': (
- eval_config.include_metrics_per_category)
- }
- elif eval_metric_fn_key == 'precision_at_recall_detection_metrics':
- evaluator_options[eval_metric_fn_key] = {
- 'recall_lower_bound': (eval_config.recall_lower_bound),
- 'recall_upper_bound': (eval_config.recall_upper_bound)
- }
- return evaluator_options
|