|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
-
- """Tests for object_detection.utils.test_utils."""
-
- import numpy as np
- import tensorflow as tf
-
- from object_detection.utils import test_utils
-
-
- class TestUtilsTest(tf.test.TestCase):
-
- def test_diagonal_gradient_image(self):
- """Tests if a good pyramid image is created."""
- pyramid_image = test_utils.create_diagonal_gradient_image(3, 4, 2)
-
- # Test which is easy to understand.
- expected_first_channel = np.array([[3, 2, 1, 0],
- [4, 3, 2, 1],
- [5, 4, 3, 2]], dtype=np.float32)
- self.assertAllEqual(np.squeeze(pyramid_image[:, :, 0]),
- expected_first_channel)
-
- # Actual test.
- expected_image = np.array([[[3, 30],
- [2, 20],
- [1, 10],
- [0, 0]],
- [[4, 40],
- [3, 30],
- [2, 20],
- [1, 10]],
- [[5, 50],
- [4, 40],
- [3, 30],
- [2, 20]]], dtype=np.float32)
-
- self.assertAllEqual(pyramid_image, expected_image)
-
- def test_random_boxes(self):
- """Tests if valid random boxes are created."""
- num_boxes = 1000
- max_height = 3
- max_width = 5
- boxes = test_utils.create_random_boxes(num_boxes,
- max_height,
- max_width)
-
- true_column = np.ones(shape=(num_boxes)) == 1
- self.assertAllEqual(boxes[:, 0] < boxes[:, 2], true_column)
- self.assertAllEqual(boxes[:, 1] < boxes[:, 3], true_column)
-
- self.assertTrue(boxes[:, 0].min() >= 0)
- self.assertTrue(boxes[:, 1].min() >= 0)
- self.assertTrue(boxes[:, 2].max() <= max_height)
- self.assertTrue(boxes[:, 3].max() <= max_width)
-
- def test_first_rows_close_as_set(self):
- a = [1, 2, 3, 0, 0]
- b = [3, 2, 1, 0, 0]
- k = 3
- self.assertTrue(test_utils.first_rows_close_as_set(a, b, k))
-
- a = [[1, 2], [1, 4], [0, 0]]
- b = [[1, 4 + 1e-9], [1, 2], [0, 0]]
- k = 2
- self.assertTrue(test_utils.first_rows_close_as_set(a, b, k))
-
- a = [[1, 2], [1, 4], [0, 0]]
- b = [[1, 4 + 1e-9], [2, 2], [0, 0]]
- k = 2
- self.assertFalse(test_utils.first_rows_close_as_set(a, b, k))
-
-
- if __name__ == '__main__':
- tf.test.main()
|