|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
-
- """Functions to build DetectionModel training optimizers."""
-
- import tensorflow as tf
-
-
- from object_detection.utils import learning_schedules
-
-
- def build(optimizer_config, global_step=None):
- """Create optimizer based on config.
-
- Args:
- optimizer_config: A Optimizer proto message.
- global_step: A variable representing the current step.
- If None, defaults to tf.train.get_or_create_global_step()
-
- Returns:
- An optimizer and a list of variables for summary.
-
- Raises:
- ValueError: when using an unsupported input data type.
- """
- optimizer_type = optimizer_config.WhichOneof('optimizer')
- optimizer = None
-
- summary_vars = []
- if optimizer_type == 'rms_prop_optimizer':
- config = optimizer_config.rms_prop_optimizer
- learning_rate = _create_learning_rate(config.learning_rate,
- global_step=global_step)
- summary_vars.append(learning_rate)
- optimizer = tf.train.RMSPropOptimizer(
- learning_rate,
- decay=config.decay,
- momentum=config.momentum_optimizer_value,
- epsilon=config.epsilon)
-
- if optimizer_type == 'momentum_optimizer':
- config = optimizer_config.momentum_optimizer
- learning_rate = _create_learning_rate(config.learning_rate,
- global_step=global_step)
- summary_vars.append(learning_rate)
- optimizer = tf.train.MomentumOptimizer(
- learning_rate,
- momentum=config.momentum_optimizer_value)
-
- if optimizer_type == 'adam_optimizer':
- config = optimizer_config.adam_optimizer
- learning_rate = _create_learning_rate(config.learning_rate,
- global_step=global_step)
- summary_vars.append(learning_rate)
- optimizer = tf.train.AdamOptimizer(learning_rate)
-
-
- if optimizer is None:
- raise ValueError('Optimizer %s not supported.' % optimizer_type)
-
- if optimizer_config.use_moving_average:
- optimizer = tf.contrib.opt.MovingAverageOptimizer(
- optimizer, average_decay=optimizer_config.moving_average_decay)
-
- return optimizer, summary_vars
-
-
- def _create_learning_rate(learning_rate_config, global_step=None):
- """Create optimizer learning rate based on config.
-
- Args:
- learning_rate_config: A LearningRate proto message.
- global_step: A variable representing the current step.
- If None, defaults to tf.train.get_or_create_global_step()
-
- Returns:
- A learning rate.
-
- Raises:
- ValueError: when using an unsupported input data type.
- """
- if global_step is None:
- global_step = tf.train.get_or_create_global_step()
- learning_rate = None
- learning_rate_type = learning_rate_config.WhichOneof('learning_rate')
- if learning_rate_type == 'constant_learning_rate':
- config = learning_rate_config.constant_learning_rate
- learning_rate = tf.constant(config.learning_rate, dtype=tf.float32,
- name='learning_rate')
-
- if learning_rate_type == 'exponential_decay_learning_rate':
- config = learning_rate_config.exponential_decay_learning_rate
- learning_rate = learning_schedules.exponential_decay_with_burnin(
- global_step,
- config.initial_learning_rate,
- config.decay_steps,
- config.decay_factor,
- burnin_learning_rate=config.burnin_learning_rate,
- burnin_steps=config.burnin_steps,
- min_learning_rate=config.min_learning_rate,
- staircase=config.staircase)
-
- if learning_rate_type == 'manual_step_learning_rate':
- config = learning_rate_config.manual_step_learning_rate
- if not config.schedule:
- raise ValueError('Empty learning rate schedule.')
- learning_rate_step_boundaries = [x.step for x in config.schedule]
- learning_rate_sequence = [config.initial_learning_rate]
- learning_rate_sequence += [x.learning_rate for x in config.schedule]
- learning_rate = learning_schedules.manual_stepping(
- global_step, learning_rate_step_boundaries,
- learning_rate_sequence, config.warmup)
-
- if learning_rate_type == 'cosine_decay_learning_rate':
- config = learning_rate_config.cosine_decay_learning_rate
- learning_rate = learning_schedules.cosine_decay_with_warmup(
- global_step,
- config.learning_rate_base,
- config.total_steps,
- config.warmup_learning_rate,
- config.warmup_steps,
- config.hold_base_rate_steps)
-
- if learning_rate is None:
- raise ValueError('Learning_rate %s not supported.' % learning_rate_type)
-
- return learning_rate
|