|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
-
- """Tests for object_detection.utils.ops."""
- import numpy as np
- import tensorflow as tf
-
- from object_detection.core import standard_fields as fields
- from object_detection.utils import ops
- from object_detection.utils import test_case
-
- slim = tf.contrib.slim
-
-
- class NormalizedToImageCoordinatesTest(tf.test.TestCase):
-
- def test_normalized_to_image_coordinates(self):
- normalized_boxes = tf.placeholder(tf.float32, shape=(None, 1, 4))
- normalized_boxes_np = np.array([[[0.0, 0.0, 1.0, 1.0]],
- [[0.5, 0.5, 1.0, 1.0]]])
- image_shape = tf.convert_to_tensor([1, 4, 4, 3], dtype=tf.int32)
- absolute_boxes = ops.normalized_to_image_coordinates(normalized_boxes,
- image_shape,
- parallel_iterations=2)
-
- expected_boxes = np.array([[[0, 0, 4, 4]],
- [[2, 2, 4, 4]]])
- with self.test_session() as sess:
- absolute_boxes = sess.run(absolute_boxes,
- feed_dict={normalized_boxes:
- normalized_boxes_np})
-
- self.assertAllEqual(absolute_boxes, expected_boxes)
-
-
- class ReduceSumTrailingDimensions(tf.test.TestCase):
-
- def test_reduce_sum_trailing_dimensions(self):
- input_tensor = tf.placeholder(tf.float32, shape=[None, None, None])
- reduced_tensor = ops.reduce_sum_trailing_dimensions(input_tensor, ndims=2)
- with self.test_session() as sess:
- reduced_np = sess.run(reduced_tensor,
- feed_dict={input_tensor: np.ones((2, 2, 2),
- np.float32)})
- self.assertAllClose(reduced_np, 2 * np.ones((2, 2), np.float32))
-
-
- class MeshgridTest(tf.test.TestCase):
-
- def test_meshgrid_numpy_comparison(self):
- """Tests meshgrid op with vectors, for which it should match numpy."""
- x = np.arange(4)
- y = np.arange(6)
- exp_xgrid, exp_ygrid = np.meshgrid(x, y)
- xgrid, ygrid = ops.meshgrid(x, y)
- with self.test_session() as sess:
- xgrid_output, ygrid_output = sess.run([xgrid, ygrid])
- self.assertAllEqual(xgrid_output, exp_xgrid)
- self.assertAllEqual(ygrid_output, exp_ygrid)
-
- def test_meshgrid_multidimensional(self):
- np.random.seed(18)
- x = np.random.rand(4, 1, 2).astype(np.float32)
- y = np.random.rand(2, 3).astype(np.float32)
-
- xgrid, ygrid = ops.meshgrid(x, y)
-
- grid_shape = list(y.shape) + list(x.shape)
- self.assertEqual(xgrid.get_shape().as_list(), grid_shape)
- self.assertEqual(ygrid.get_shape().as_list(), grid_shape)
- with self.test_session() as sess:
- xgrid_output, ygrid_output = sess.run([xgrid, ygrid])
-
- # Check the shape of the output grids
- self.assertEqual(xgrid_output.shape, tuple(grid_shape))
- self.assertEqual(ygrid_output.shape, tuple(grid_shape))
-
- # Check a few elements
- test_elements = [((3, 0, 0), (1, 2)),
- ((2, 0, 1), (0, 0)),
- ((0, 0, 0), (1, 1))]
- for xind, yind in test_elements:
- # These are float equality tests, but the meshgrid op should not introduce
- # rounding.
- self.assertEqual(xgrid_output[yind + xind], x[xind])
- self.assertEqual(ygrid_output[yind + xind], y[yind])
-
-
- class OpsTestFixedPadding(tf.test.TestCase):
-
- def test_3x3_kernel(self):
- tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
- padded_tensor = ops.fixed_padding(tensor, 3)
- with self.test_session() as sess:
- padded_tensor_out = sess.run(padded_tensor)
- self.assertEqual((1, 4, 4, 1), padded_tensor_out.shape)
-
- def test_5x5_kernel(self):
- tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
- padded_tensor = ops.fixed_padding(tensor, 5)
- with self.test_session() as sess:
- padded_tensor_out = sess.run(padded_tensor)
- self.assertEqual((1, 6, 6, 1), padded_tensor_out.shape)
-
- def test_3x3_atrous_kernel(self):
- tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
- padded_tensor = ops.fixed_padding(tensor, 3, 2)
- with self.test_session() as sess:
- padded_tensor_out = sess.run(padded_tensor)
- self.assertEqual((1, 6, 6, 1), padded_tensor_out.shape)
-
-
- class OpsTestPadToMultiple(tf.test.TestCase):
-
- def test_zero_padding(self):
- tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
- padded_tensor = ops.pad_to_multiple(tensor, 1)
- with self.test_session() as sess:
- padded_tensor_out = sess.run(padded_tensor)
- self.assertEqual((1, 2, 2, 1), padded_tensor_out.shape)
-
- def test_no_padding(self):
- tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
- padded_tensor = ops.pad_to_multiple(tensor, 2)
- with self.test_session() as sess:
- padded_tensor_out = sess.run(padded_tensor)
- self.assertEqual((1, 2, 2, 1), padded_tensor_out.shape)
-
- def test_non_square_padding(self):
- tensor = tf.constant([[[[0.], [0.]]]])
- padded_tensor = ops.pad_to_multiple(tensor, 2)
- with self.test_session() as sess:
- padded_tensor_out = sess.run(padded_tensor)
- self.assertEqual((1, 2, 2, 1), padded_tensor_out.shape)
-
- def test_padding(self):
- tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
- padded_tensor = ops.pad_to_multiple(tensor, 4)
- with self.test_session() as sess:
- padded_tensor_out = sess.run(padded_tensor)
- self.assertEqual((1, 4, 4, 1), padded_tensor_out.shape)
-
-
- class OpsTestPaddedOneHotEncoding(tf.test.TestCase):
-
- def test_correct_one_hot_tensor_with_no_pad(self):
- indices = tf.constant([1, 2, 3, 5])
- one_hot_tensor = ops.padded_one_hot_encoding(indices, depth=6, left_pad=0)
- expected_tensor = np.array([[0, 1, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 0],
- [0, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 1]], np.float32)
- with self.test_session() as sess:
- out_one_hot_tensor = sess.run(one_hot_tensor)
- self.assertAllClose(out_one_hot_tensor, expected_tensor, rtol=1e-10,
- atol=1e-10)
-
- def test_correct_one_hot_tensor_with_pad_one(self):
- indices = tf.constant([1, 2, 3, 5])
- one_hot_tensor = ops.padded_one_hot_encoding(indices, depth=6, left_pad=1)
- expected_tensor = np.array([[0, 0, 1, 0, 0, 0, 0],
- [0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 1]], np.float32)
- with self.test_session() as sess:
- out_one_hot_tensor = sess.run(one_hot_tensor)
- self.assertAllClose(out_one_hot_tensor, expected_tensor, rtol=1e-10,
- atol=1e-10)
-
- def test_correct_one_hot_tensor_with_pad_three(self):
- indices = tf.constant([1, 2, 3, 5])
- one_hot_tensor = ops.padded_one_hot_encoding(indices, depth=6, left_pad=3)
- expected_tensor = np.array([[0, 0, 0, 0, 1, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 1, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 1, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 1]], np.float32)
- with self.test_session() as sess:
- out_one_hot_tensor = sess.run(one_hot_tensor)
- self.assertAllClose(out_one_hot_tensor, expected_tensor, rtol=1e-10,
- atol=1e-10)
-
- def test_correct_padded_one_hot_tensor_with_empty_indices(self):
- depth = 6
- pad = 2
- indices = tf.constant([])
- one_hot_tensor = ops.padded_one_hot_encoding(
- indices, depth=depth, left_pad=pad)
- expected_tensor = np.zeros((0, depth + pad))
- with self.test_session() as sess:
- out_one_hot_tensor = sess.run(one_hot_tensor)
- self.assertAllClose(out_one_hot_tensor, expected_tensor, rtol=1e-10,
- atol=1e-10)
-
- def test_return_none_on_zero_depth(self):
- indices = tf.constant([1, 2, 3, 4, 5])
- one_hot_tensor = ops.padded_one_hot_encoding(indices, depth=0, left_pad=2)
- self.assertEqual(one_hot_tensor, None)
-
- def test_raise_value_error_on_rank_two_input(self):
- indices = tf.constant(1.0, shape=(2, 3))
- with self.assertRaises(ValueError):
- ops.padded_one_hot_encoding(indices, depth=6, left_pad=2)
-
- def test_raise_value_error_on_negative_pad(self):
- indices = tf.constant(1.0, shape=(2, 3))
- with self.assertRaises(ValueError):
- ops.padded_one_hot_encoding(indices, depth=6, left_pad=-1)
-
- def test_raise_value_error_on_float_pad(self):
- indices = tf.constant(1.0, shape=(2, 3))
- with self.assertRaises(ValueError):
- ops.padded_one_hot_encoding(indices, depth=6, left_pad=0.1)
-
- def test_raise_value_error_on_float_depth(self):
- indices = tf.constant(1.0, shape=(2, 3))
- with self.assertRaises(ValueError):
- ops.padded_one_hot_encoding(indices, depth=0.1, left_pad=2)
-
-
- class OpsDenseToSparseBoxesTest(tf.test.TestCase):
-
- def test_return_all_boxes_when_all_input_boxes_are_valid(self):
- num_classes = 4
- num_valid_boxes = 3
- code_size = 4
- dense_location_placeholder = tf.placeholder(tf.float32,
- shape=(num_valid_boxes,
- code_size))
- dense_num_boxes_placeholder = tf.placeholder(tf.int32, shape=(num_classes))
- box_locations, box_classes = ops.dense_to_sparse_boxes(
- dense_location_placeholder, dense_num_boxes_placeholder, num_classes)
- feed_dict = {dense_location_placeholder: np.random.uniform(
- size=[num_valid_boxes, code_size]),
- dense_num_boxes_placeholder: np.array([1, 0, 0, 2],
- dtype=np.int32)}
-
- expected_box_locations = feed_dict[dense_location_placeholder]
- expected_box_classses = np.array([0, 3, 3])
- with self.test_session() as sess:
- box_locations, box_classes = sess.run([box_locations, box_classes],
- feed_dict=feed_dict)
-
- self.assertAllClose(box_locations, expected_box_locations, rtol=1e-6,
- atol=1e-6)
- self.assertAllEqual(box_classes, expected_box_classses)
-
- def test_return_only_valid_boxes_when_input_contains_invalid_boxes(self):
- num_classes = 4
- num_valid_boxes = 3
- num_boxes = 10
- code_size = 4
-
- dense_location_placeholder = tf.placeholder(tf.float32, shape=(num_boxes,
- code_size))
- dense_num_boxes_placeholder = tf.placeholder(tf.int32, shape=(num_classes))
- box_locations, box_classes = ops.dense_to_sparse_boxes(
- dense_location_placeholder, dense_num_boxes_placeholder, num_classes)
- feed_dict = {dense_location_placeholder: np.random.uniform(
- size=[num_boxes, code_size]),
- dense_num_boxes_placeholder: np.array([1, 0, 0, 2],
- dtype=np.int32)}
-
- expected_box_locations = (feed_dict[dense_location_placeholder]
- [:num_valid_boxes])
- expected_box_classses = np.array([0, 3, 3])
- with self.test_session() as sess:
- box_locations, box_classes = sess.run([box_locations, box_classes],
- feed_dict=feed_dict)
-
- self.assertAllClose(box_locations, expected_box_locations, rtol=1e-6,
- atol=1e-6)
- self.assertAllEqual(box_classes, expected_box_classses)
-
-
- class OpsTestIndicesToDenseVector(tf.test.TestCase):
-
- def test_indices_to_dense_vector(self):
- size = 10000
- num_indices = np.random.randint(size)
- rand_indices = np.random.permutation(np.arange(size))[0:num_indices]
-
- expected_output = np.zeros(size, dtype=np.float32)
- expected_output[rand_indices] = 1.
-
- tf_rand_indices = tf.constant(rand_indices)
- indicator = ops.indices_to_dense_vector(tf_rand_indices, size)
-
- with self.test_session() as sess:
- output = sess.run(indicator)
- self.assertAllEqual(output, expected_output)
- self.assertEqual(output.dtype, expected_output.dtype)
-
- def test_indices_to_dense_vector_size_at_inference(self):
- size = 5000
- num_indices = 250
- all_indices = np.arange(size)
- rand_indices = np.random.permutation(all_indices)[0:num_indices]
-
- expected_output = np.zeros(size, dtype=np.float32)
- expected_output[rand_indices] = 1.
-
- tf_all_indices = tf.placeholder(tf.int32)
- tf_rand_indices = tf.constant(rand_indices)
- indicator = ops.indices_to_dense_vector(tf_rand_indices,
- tf.shape(tf_all_indices)[0])
- feed_dict = {tf_all_indices: all_indices}
-
- with self.test_session() as sess:
- output = sess.run(indicator, feed_dict=feed_dict)
- self.assertAllEqual(output, expected_output)
- self.assertEqual(output.dtype, expected_output.dtype)
-
- def test_indices_to_dense_vector_int(self):
- size = 500
- num_indices = 25
- rand_indices = np.random.permutation(np.arange(size))[0:num_indices]
-
- expected_output = np.zeros(size, dtype=np.int64)
- expected_output[rand_indices] = 1
-
- tf_rand_indices = tf.constant(rand_indices)
- indicator = ops.indices_to_dense_vector(
- tf_rand_indices, size, 1, dtype=tf.int64)
-
- with self.test_session() as sess:
- output = sess.run(indicator)
- self.assertAllEqual(output, expected_output)
- self.assertEqual(output.dtype, expected_output.dtype)
-
- def test_indices_to_dense_vector_custom_values(self):
- size = 100
- num_indices = 10
- rand_indices = np.random.permutation(np.arange(size))[0:num_indices]
- indices_value = np.random.rand(1)
- default_value = np.random.rand(1)
-
- expected_output = np.float32(np.ones(size) * default_value)
- expected_output[rand_indices] = indices_value
-
- tf_rand_indices = tf.constant(rand_indices)
- indicator = ops.indices_to_dense_vector(
- tf_rand_indices,
- size,
- indices_value=indices_value,
- default_value=default_value)
-
- with self.test_session() as sess:
- output = sess.run(indicator)
- self.assertAllClose(output, expected_output)
- self.assertEqual(output.dtype, expected_output.dtype)
-
- def test_indices_to_dense_vector_all_indices_as_input(self):
- size = 500
- num_indices = 500
- rand_indices = np.random.permutation(np.arange(size))[0:num_indices]
-
- expected_output = np.ones(size, dtype=np.float32)
-
- tf_rand_indices = tf.constant(rand_indices)
- indicator = ops.indices_to_dense_vector(tf_rand_indices, size)
-
- with self.test_session() as sess:
- output = sess.run(indicator)
- self.assertAllEqual(output, expected_output)
- self.assertEqual(output.dtype, expected_output.dtype)
-
- def test_indices_to_dense_vector_empty_indices_as_input(self):
- size = 500
- rand_indices = []
-
- expected_output = np.zeros(size, dtype=np.float32)
-
- tf_rand_indices = tf.constant(rand_indices)
- indicator = ops.indices_to_dense_vector(tf_rand_indices, size)
-
- with self.test_session() as sess:
- output = sess.run(indicator)
- self.assertAllEqual(output, expected_output)
- self.assertEqual(output.dtype, expected_output.dtype)
-
-
- class GroundtruthFilterTest(tf.test.TestCase):
-
- def test_filter_groundtruth(self):
- input_image = tf.placeholder(tf.float32, shape=(None, None, 3))
- input_boxes = tf.placeholder(tf.float32, shape=(None, 4))
- input_classes = tf.placeholder(tf.int32, shape=(None,))
- input_is_crowd = tf.placeholder(tf.bool, shape=(None,))
- input_area = tf.placeholder(tf.float32, shape=(None,))
- input_difficult = tf.placeholder(tf.float32, shape=(None,))
- input_label_types = tf.placeholder(tf.string, shape=(None,))
- input_confidences = tf.placeholder(tf.float32, shape=(None,))
- valid_indices = tf.placeholder(tf.int32, shape=(None,))
- input_tensors = {
- fields.InputDataFields.image: input_image,
- fields.InputDataFields.groundtruth_boxes: input_boxes,
- fields.InputDataFields.groundtruth_classes: input_classes,
- fields.InputDataFields.groundtruth_is_crowd: input_is_crowd,
- fields.InputDataFields.groundtruth_area: input_area,
- fields.InputDataFields.groundtruth_difficult: input_difficult,
- fields.InputDataFields.groundtruth_label_types: input_label_types,
- fields.InputDataFields.groundtruth_confidences: input_confidences,
- }
- output_tensors = ops.retain_groundtruth(input_tensors, valid_indices)
-
- image_tensor = np.random.rand(224, 224, 3)
- feed_dict = {
- input_image: image_tensor,
- input_boxes:
- np.array([[0.2, 0.4, 0.1, 0.8], [0.2, 0.4, 1.0, 0.8]], dtype=np.float),
- input_classes: np.array([1, 2], dtype=np.int32),
- input_is_crowd: np.array([False, True], dtype=np.bool),
- input_area: np.array([32, 48], dtype=np.float32),
- input_difficult: np.array([True, False], dtype=np.bool),
- input_label_types:
- np.array(['APPROPRIATE', 'INCORRECT'], dtype=np.string_),
- input_confidences: np.array([0.99, 0.5], dtype=np.float32),
- valid_indices: np.array([0], dtype=np.int32),
- }
- expected_tensors = {
- fields.InputDataFields.image: image_tensor,
- fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]],
- fields.InputDataFields.groundtruth_classes: [1],
- fields.InputDataFields.groundtruth_is_crowd: [False],
- fields.InputDataFields.groundtruth_area: [32],
- fields.InputDataFields.groundtruth_difficult: [True],
- fields.InputDataFields.groundtruth_label_types: ['APPROPRIATE'],
- fields.InputDataFields.groundtruth_confidences: [0.99],
- }
- with self.test_session() as sess:
- output_tensors = sess.run(output_tensors, feed_dict=feed_dict)
- for key in [fields.InputDataFields.image,
- fields.InputDataFields.groundtruth_boxes,
- fields.InputDataFields.groundtruth_area,
- fields.InputDataFields.groundtruth_confidences]:
- self.assertAllClose(expected_tensors[key], output_tensors[key])
- for key in [fields.InputDataFields.groundtruth_classes,
- fields.InputDataFields.groundtruth_is_crowd,
- fields.InputDataFields.groundtruth_label_types]:
- self.assertAllEqual(expected_tensors[key], output_tensors[key])
-
- def test_filter_with_missing_fields(self):
- input_boxes = tf.placeholder(tf.float32, shape=(None, 4))
- input_classes = tf.placeholder(tf.int32, shape=(None,))
- input_tensors = {
- fields.InputDataFields.groundtruth_boxes: input_boxes,
- fields.InputDataFields.groundtruth_classes: input_classes
- }
- valid_indices = tf.placeholder(tf.int32, shape=(None,))
-
- feed_dict = {
- input_boxes:
- np.array([[0.2, 0.4, 0.1, 0.8], [0.2, 0.4, 1.0, 0.8]], dtype=np.float),
- input_classes:
- np.array([1, 2], dtype=np.int32),
- valid_indices:
- np.array([0], dtype=np.int32)
- }
- expected_tensors = {
- fields.InputDataFields.groundtruth_boxes:
- [[0.2, 0.4, 0.1, 0.8]],
- fields.InputDataFields.groundtruth_classes:
- [1]
- }
-
- output_tensors = ops.retain_groundtruth(input_tensors, valid_indices)
- with self.test_session() as sess:
- output_tensors = sess.run(output_tensors, feed_dict=feed_dict)
- for key in [fields.InputDataFields.groundtruth_boxes]:
- self.assertAllClose(expected_tensors[key], output_tensors[key])
- for key in [fields.InputDataFields.groundtruth_classes]:
- self.assertAllEqual(expected_tensors[key], output_tensors[key])
-
- def test_filter_with_empty_fields(self):
- input_boxes = tf.placeholder(tf.float32, shape=(None, 4))
- input_classes = tf.placeholder(tf.int32, shape=(None,))
- input_is_crowd = tf.placeholder(tf.bool, shape=(None,))
- input_area = tf.placeholder(tf.float32, shape=(None,))
- input_difficult = tf.placeholder(tf.float32, shape=(None,))
- input_confidences = tf.placeholder(tf.float32, shape=(None,))
- valid_indices = tf.placeholder(tf.int32, shape=(None,))
- input_tensors = {
- fields.InputDataFields.groundtruth_boxes: input_boxes,
- fields.InputDataFields.groundtruth_classes: input_classes,
- fields.InputDataFields.groundtruth_is_crowd: input_is_crowd,
- fields.InputDataFields.groundtruth_area: input_area,
- fields.InputDataFields.groundtruth_difficult: input_difficult,
- fields.InputDataFields.groundtruth_confidences: input_confidences,
- }
- output_tensors = ops.retain_groundtruth(input_tensors, valid_indices)
-
- feed_dict = {
- input_boxes:
- np.array([[0.2, 0.4, 0.1, 0.8], [0.2, 0.4, 1.0, 0.8]], dtype=np.float),
- input_classes: np.array([1, 2], dtype=np.int32),
- input_is_crowd: np.array([False, True], dtype=np.bool),
- input_area: np.array([], dtype=np.float32),
- input_difficult: np.array([], dtype=np.float32),
- input_confidences: np.array([0.99, 0.5], dtype=np.float32),
- valid_indices: np.array([0], dtype=np.int32)
- }
- expected_tensors = {
- fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]],
- fields.InputDataFields.groundtruth_classes: [1],
- fields.InputDataFields.groundtruth_is_crowd: [False],
- fields.InputDataFields.groundtruth_area: [],
- fields.InputDataFields.groundtruth_difficult: [],
- fields.InputDataFields.groundtruth_confidences: [0.99],
- }
- with self.test_session() as sess:
- output_tensors = sess.run(output_tensors, feed_dict=feed_dict)
- for key in [fields.InputDataFields.groundtruth_boxes,
- fields.InputDataFields.groundtruth_area,
- fields.InputDataFields.groundtruth_confidences]:
- self.assertAllClose(expected_tensors[key], output_tensors[key])
- for key in [fields.InputDataFields.groundtruth_classes,
- fields.InputDataFields.groundtruth_is_crowd]:
- self.assertAllEqual(expected_tensors[key], output_tensors[key])
-
- def test_filter_with_empty_groundtruth_boxes(self):
- input_boxes = tf.placeholder(tf.float32, shape=(None, 4))
- input_classes = tf.placeholder(tf.int32, shape=(None,))
- input_is_crowd = tf.placeholder(tf.bool, shape=(None,))
- input_area = tf.placeholder(tf.float32, shape=(None,))
- input_difficult = tf.placeholder(tf.float32, shape=(None,))
- input_confidences = tf.placeholder(tf.float32, shape=(None,))
- valid_indices = tf.placeholder(tf.int32, shape=(None,))
- input_tensors = {
- fields.InputDataFields.groundtruth_boxes: input_boxes,
- fields.InputDataFields.groundtruth_classes: input_classes,
- fields.InputDataFields.groundtruth_is_crowd: input_is_crowd,
- fields.InputDataFields.groundtruth_area: input_area,
- fields.InputDataFields.groundtruth_difficult: input_difficult,
- fields.InputDataFields.groundtruth_confidences: input_confidences,
- }
- output_tensors = ops.retain_groundtruth(input_tensors, valid_indices)
-
- feed_dict = {
- input_boxes: np.array([], dtype=np.float).reshape(0, 4),
- input_classes: np.array([], dtype=np.int32),
- input_is_crowd: np.array([], dtype=np.bool),
- input_area: np.array([], dtype=np.float32),
- input_difficult: np.array([], dtype=np.float32),
- input_confidences: np.array([], dtype=np.float32),
- valid_indices: np.array([], dtype=np.int32),
- }
- with self.test_session() as sess:
- output_tensors = sess.run(output_tensors, feed_dict=feed_dict)
- for key in input_tensors:
- if key == fields.InputDataFields.groundtruth_boxes:
- self.assertAllEqual([0, 4], output_tensors[key].shape)
- else:
- self.assertAllEqual([0], output_tensors[key].shape)
-
-
- class RetainGroundTruthWithPositiveClasses(tf.test.TestCase):
-
- def test_filter_groundtruth_with_positive_classes(self):
- input_image = tf.placeholder(tf.float32, shape=(None, None, 3))
- input_boxes = tf.placeholder(tf.float32, shape=(None, 4))
- input_classes = tf.placeholder(tf.int32, shape=(None,))
- input_is_crowd = tf.placeholder(tf.bool, shape=(None,))
- input_area = tf.placeholder(tf.float32, shape=(None,))
- input_difficult = tf.placeholder(tf.float32, shape=(None,))
- input_label_types = tf.placeholder(tf.string, shape=(None,))
- input_confidences = tf.placeholder(tf.float32, shape=(None,))
- valid_indices = tf.placeholder(tf.int32, shape=(None,))
- input_tensors = {
- fields.InputDataFields.image: input_image,
- fields.InputDataFields.groundtruth_boxes: input_boxes,
- fields.InputDataFields.groundtruth_classes: input_classes,
- fields.InputDataFields.groundtruth_is_crowd: input_is_crowd,
- fields.InputDataFields.groundtruth_area: input_area,
- fields.InputDataFields.groundtruth_difficult: input_difficult,
- fields.InputDataFields.groundtruth_label_types: input_label_types,
- fields.InputDataFields.groundtruth_confidences: input_confidences,
- }
- output_tensors = ops.retain_groundtruth_with_positive_classes(input_tensors)
-
- image_tensor = np.random.rand(224, 224, 3)
- feed_dict = {
- input_image: image_tensor,
- input_boxes:
- np.array([[0.2, 0.4, 0.1, 0.8], [0.2, 0.4, 1.0, 0.8]], dtype=np.float),
- input_classes: np.array([1, 0], dtype=np.int32),
- input_is_crowd: np.array([False, True], dtype=np.bool),
- input_area: np.array([32, 48], dtype=np.float32),
- input_difficult: np.array([True, False], dtype=np.bool),
- input_label_types:
- np.array(['APPROPRIATE', 'INCORRECT'], dtype=np.string_),
- input_confidences: np.array([0.99, 0.5], dtype=np.float32),
- valid_indices: np.array([0], dtype=np.int32),
- }
- expected_tensors = {
- fields.InputDataFields.image: image_tensor,
- fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]],
- fields.InputDataFields.groundtruth_classes: [1],
- fields.InputDataFields.groundtruth_is_crowd: [False],
- fields.InputDataFields.groundtruth_area: [32],
- fields.InputDataFields.groundtruth_difficult: [True],
- fields.InputDataFields.groundtruth_label_types: ['APPROPRIATE'],
- fields.InputDataFields.groundtruth_confidences: [0.99],
- }
- with self.test_session() as sess:
- output_tensors = sess.run(output_tensors, feed_dict=feed_dict)
- for key in [fields.InputDataFields.image,
- fields.InputDataFields.groundtruth_boxes,
- fields.InputDataFields.groundtruth_area,
- fields.InputDataFields.groundtruth_confidences]:
- self.assertAllClose(expected_tensors[key], output_tensors[key])
- for key in [fields.InputDataFields.groundtruth_classes,
- fields.InputDataFields.groundtruth_is_crowd,
- fields.InputDataFields.groundtruth_label_types]:
- self.assertAllEqual(expected_tensors[key], output_tensors[key])
-
-
- class ReplaceNaNGroundtruthLabelScoresWithOnes(tf.test.TestCase):
-
- def test_replace_nan_groundtruth_label_scores_with_ones(self):
- label_scores = tf.constant([np.nan, 1.0, np.nan])
- output_tensor = ops.replace_nan_groundtruth_label_scores_with_ones(
- label_scores)
- expected_tensor = [1.0, 1.0, 1.0]
- with self.test_session():
- output_tensor = output_tensor.eval()
- self.assertAllClose(expected_tensor, output_tensor)
-
- def test_input_equals_output_when_no_nans(self):
- input_label_scores = [0.5, 1.0, 1.0]
- label_scores_tensor = tf.constant(input_label_scores)
- output_label_scores = ops.replace_nan_groundtruth_label_scores_with_ones(
- label_scores_tensor)
- with self.test_session():
- output_label_scores = output_label_scores.eval()
- self.assertAllClose(input_label_scores, output_label_scores)
-
-
- class GroundtruthFilterWithCrowdBoxesTest(tf.test.TestCase):
-
- def test_filter_groundtruth_with_crowd_boxes(self):
- input_tensors = {
- fields.InputDataFields.groundtruth_boxes:
- [[0.1, 0.2, 0.6, 0.8], [0.2, 0.4, 0.1, 0.8]],
- fields.InputDataFields.groundtruth_classes: [1, 2],
- fields.InputDataFields.groundtruth_is_crowd: [True, False],
- fields.InputDataFields.groundtruth_area: [100.0, 238.7],
- fields.InputDataFields.groundtruth_confidences: [0.5, 0.99],
- }
-
- expected_tensors = {
- fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]],
- fields.InputDataFields.groundtruth_classes: [2],
- fields.InputDataFields.groundtruth_is_crowd: [False],
- fields.InputDataFields.groundtruth_area: [238.7],
- fields.InputDataFields.groundtruth_confidences: [0.99],
- }
-
- output_tensors = ops.filter_groundtruth_with_crowd_boxes(
- input_tensors)
- with self.test_session() as sess:
- output_tensors = sess.run(output_tensors)
- for key in [fields.InputDataFields.groundtruth_boxes,
- fields.InputDataFields.groundtruth_area,
- fields.InputDataFields.groundtruth_confidences]:
- self.assertAllClose(expected_tensors[key], output_tensors[key])
- for key in [fields.InputDataFields.groundtruth_classes,
- fields.InputDataFields.groundtruth_is_crowd]:
- self.assertAllEqual(expected_tensors[key], output_tensors[key])
-
-
- class GroundtruthFilterWithNanBoxTest(tf.test.TestCase):
-
- def test_filter_groundtruth_with_nan_box_coordinates(self):
- input_tensors = {
- fields.InputDataFields.groundtruth_boxes:
- [[np.nan, np.nan, np.nan, np.nan], [0.2, 0.4, 0.1, 0.8]],
- fields.InputDataFields.groundtruth_classes: [1, 2],
- fields.InputDataFields.groundtruth_is_crowd: [False, True],
- fields.InputDataFields.groundtruth_area: [100.0, 238.7],
- fields.InputDataFields.groundtruth_confidences: [0.5, 0.99],
- }
-
- expected_tensors = {
- fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]],
- fields.InputDataFields.groundtruth_classes: [2],
- fields.InputDataFields.groundtruth_is_crowd: [True],
- fields.InputDataFields.groundtruth_area: [238.7],
- fields.InputDataFields.groundtruth_confidences: [0.99],
- }
-
- output_tensors = ops.filter_groundtruth_with_nan_box_coordinates(
- input_tensors)
- with self.test_session() as sess:
- output_tensors = sess.run(output_tensors)
- for key in [fields.InputDataFields.groundtruth_boxes,
- fields.InputDataFields.groundtruth_area,
- fields.InputDataFields.groundtruth_confidences]:
- self.assertAllClose(expected_tensors[key], output_tensors[key])
- for key in [fields.InputDataFields.groundtruth_classes,
- fields.InputDataFields.groundtruth_is_crowd]:
- self.assertAllEqual(expected_tensors[key], output_tensors[key])
-
-
- class GroundtruthFilterWithUnrecognizedClassesTest(tf.test.TestCase):
-
- def test_filter_unrecognized_classes(self):
- input_tensors = {
- fields.InputDataFields.groundtruth_boxes:
- [[.3, .3, .5, .7], [0.2, 0.4, 0.1, 0.8]],
- fields.InputDataFields.groundtruth_classes: [-1, 2],
- fields.InputDataFields.groundtruth_is_crowd: [False, True],
- fields.InputDataFields.groundtruth_area: [100.0, 238.7],
- fields.InputDataFields.groundtruth_confidences: [0.5, 0.99],
- }
-
- expected_tensors = {
- fields.InputDataFields.groundtruth_boxes: [[0.2, 0.4, 0.1, 0.8]],
- fields.InputDataFields.groundtruth_classes: [2],
- fields.InputDataFields.groundtruth_is_crowd: [True],
- fields.InputDataFields.groundtruth_area: [238.7],
- fields.InputDataFields.groundtruth_confidences: [0.99],
- }
-
- output_tensors = ops.filter_unrecognized_classes(input_tensors)
- with self.test_session() as sess:
- output_tensors = sess.run(output_tensors)
- for key in [fields.InputDataFields.groundtruth_boxes,
- fields.InputDataFields.groundtruth_area,
- fields.InputDataFields.groundtruth_confidences]:
- self.assertAllClose(expected_tensors[key], output_tensors[key])
- for key in [fields.InputDataFields.groundtruth_classes,
- fields.InputDataFields.groundtruth_is_crowd]:
- self.assertAllEqual(expected_tensors[key], output_tensors[key])
-
-
- class OpsTestNormalizeToTarget(tf.test.TestCase):
-
- def test_create_normalize_to_target(self):
- inputs = tf.random_uniform([5, 10, 12, 3])
- target_norm_value = 4.0
- dim = 3
- with self.test_session():
- output = ops.normalize_to_target(inputs, target_norm_value, dim)
- self.assertEqual(output.op.name, 'NormalizeToTarget/mul')
- var_name = tf.contrib.framework.get_variables()[0].name
- self.assertEqual(var_name, 'NormalizeToTarget/weights:0')
-
- def test_invalid_dim(self):
- inputs = tf.random_uniform([5, 10, 12, 3])
- target_norm_value = 4.0
- dim = 10
- with self.assertRaisesRegexp(
- ValueError,
- 'dim must be non-negative but smaller than the input rank.'):
- ops.normalize_to_target(inputs, target_norm_value, dim)
-
- def test_invalid_target_norm_values(self):
- inputs = tf.random_uniform([5, 10, 12, 3])
- target_norm_value = [4.0, 4.0]
- dim = 3
- with self.assertRaisesRegexp(
- ValueError, 'target_norm_value must be a float or a list of floats'):
- ops.normalize_to_target(inputs, target_norm_value, dim)
-
- def test_correct_output_shape(self):
- inputs = tf.random_uniform([5, 10, 12, 3])
- target_norm_value = 4.0
- dim = 3
- with self.test_session():
- output = ops.normalize_to_target(inputs, target_norm_value, dim)
- self.assertEqual(output.get_shape().as_list(),
- inputs.get_shape().as_list())
-
- def test_correct_initial_output_values(self):
- inputs = tf.constant([[[[3, 4], [7, 24]],
- [[5, -12], [-1, 0]]]], tf.float32)
- target_norm_value = 10.0
- dim = 3
- expected_output = [[[[30/5.0, 40/5.0], [70/25.0, 240/25.0]],
- [[50/13.0, -120/13.0], [-10, 0]]]]
- with self.test_session() as sess:
- normalized_inputs = ops.normalize_to_target(inputs, target_norm_value,
- dim)
- sess.run(tf.global_variables_initializer())
- output = normalized_inputs.eval()
- self.assertAllClose(output, expected_output)
-
- def test_multiple_target_norm_values(self):
- inputs = tf.constant([[[[3, 4], [7, 24]],
- [[5, -12], [-1, 0]]]], tf.float32)
- target_norm_value = [10.0, 20.0]
- dim = 3
- expected_output = [[[[30/5.0, 80/5.0], [70/25.0, 480/25.0]],
- [[50/13.0, -240/13.0], [-10, 0]]]]
- with self.test_session() as sess:
- normalized_inputs = ops.normalize_to_target(inputs, target_norm_value,
- dim)
- sess.run(tf.global_variables_initializer())
- output = normalized_inputs.eval()
- self.assertAllClose(output, expected_output)
-
-
- class OpsTestPositionSensitiveCropRegions(tf.test.TestCase):
-
- def test_position_sensitive(self):
- num_spatial_bins = [3, 2]
- image_shape = [3, 2, 6]
-
- # First channel is 1's, second channel is 2's, etc.
- image = tf.constant(range(1, 3 * 2 + 1) * 6, dtype=tf.float32,
- shape=image_shape)
- boxes = tf.random_uniform((2, 4))
-
- # The result for both boxes should be [[1, 2], [3, 4], [5, 6]]
- # before averaging.
- expected_output = np.array([3.5, 3.5]).reshape([2, 1, 1, 1])
-
- for crop_size_mult in range(1, 3):
- crop_size = [3 * crop_size_mult, 2 * crop_size_mult]
- ps_crop_and_pool = ops.position_sensitive_crop_regions(
- image, boxes, crop_size, num_spatial_bins, global_pool=True)
-
- with self.test_session() as sess:
- output = sess.run(ps_crop_and_pool)
- self.assertAllClose(output, expected_output)
-
- def test_position_sensitive_with_equal_channels(self):
- num_spatial_bins = [2, 2]
- image_shape = [3, 3, 4]
- crop_size = [2, 2]
-
- image = tf.constant(range(1, 3 * 3 + 1), dtype=tf.float32,
- shape=[3, 3, 1])
- tiled_image = tf.tile(image, [1, 1, image_shape[2]])
- boxes = tf.random_uniform((3, 4))
- box_ind = tf.constant([0, 0, 0], dtype=tf.int32)
-
- # All channels are equal so position-sensitive crop and resize should
- # work as the usual crop and resize for just one channel.
- crop = tf.image.crop_and_resize(tf.expand_dims(image, axis=0), boxes,
- box_ind, crop_size)
- crop_and_pool = tf.reduce_mean(crop, [1, 2], keepdims=True)
-
- ps_crop_and_pool = ops.position_sensitive_crop_regions(
- tiled_image,
- boxes,
- crop_size,
- num_spatial_bins,
- global_pool=True)
-
- with self.test_session() as sess:
- expected_output, output = sess.run((crop_and_pool, ps_crop_and_pool))
- self.assertAllClose(output, expected_output)
-
- def test_raise_value_error_on_num_bins_less_than_one(self):
- num_spatial_bins = [1, -1]
- image_shape = [1, 1, 2]
- crop_size = [2, 2]
-
- image = tf.constant(1, dtype=tf.float32, shape=image_shape)
- boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32)
-
- with self.assertRaisesRegexp(ValueError, 'num_spatial_bins should be >= 1'):
- ops.position_sensitive_crop_regions(
- image, boxes, crop_size, num_spatial_bins, global_pool=True)
-
- def test_raise_value_error_on_non_divisible_crop_size(self):
- num_spatial_bins = [2, 3]
- image_shape = [1, 1, 6]
- crop_size = [3, 2]
-
- image = tf.constant(1, dtype=tf.float32, shape=image_shape)
- boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32)
-
- with self.assertRaisesRegexp(
- ValueError, 'crop_size should be divisible by num_spatial_bins'):
- ops.position_sensitive_crop_regions(
- image, boxes, crop_size, num_spatial_bins, global_pool=True)
-
- def test_raise_value_error_on_non_divisible_num_channels(self):
- num_spatial_bins = [2, 2]
- image_shape = [1, 1, 5]
- crop_size = [2, 2]
-
- image = tf.constant(1, dtype=tf.float32, shape=image_shape)
- boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32)
-
- with self.assertRaisesRegexp(
- ValueError, 'Dimension size must be evenly divisible by 4 but is 5'):
- ops.position_sensitive_crop_regions(
- image, boxes, crop_size, num_spatial_bins, global_pool=True)
-
- def test_position_sensitive_with_global_pool_false(self):
- num_spatial_bins = [3, 2]
- image_shape = [3, 2, 6]
- num_boxes = 2
-
- # First channel is 1's, second channel is 2's, etc.
- image = tf.constant(range(1, 3 * 2 + 1) * 6, dtype=tf.float32,
- shape=image_shape)
- boxes = tf.random_uniform((num_boxes, 4))
-
- expected_output = []
-
- # Expected output, when crop_size = [3, 2].
- expected_output.append(np.expand_dims(
- np.tile(np.array([[1, 2],
- [3, 4],
- [5, 6]]), (num_boxes, 1, 1)),
- axis=-1))
-
- # Expected output, when crop_size = [6, 4].
- expected_output.append(np.expand_dims(
- np.tile(np.array([[1, 1, 2, 2],
- [1, 1, 2, 2],
- [3, 3, 4, 4],
- [3, 3, 4, 4],
- [5, 5, 6, 6],
- [5, 5, 6, 6]]), (num_boxes, 1, 1)),
- axis=-1))
-
- for crop_size_mult in range(1, 3):
- crop_size = [3 * crop_size_mult, 2 * crop_size_mult]
- ps_crop = ops.position_sensitive_crop_regions(
- image, boxes, crop_size, num_spatial_bins, global_pool=False)
- with self.test_session() as sess:
- output = sess.run(ps_crop)
- self.assertAllClose(output, expected_output[crop_size_mult - 1])
-
- def test_position_sensitive_with_global_pool_false_and_do_global_pool(self):
- num_spatial_bins = [3, 2]
- image_shape = [3, 2, 6]
- num_boxes = 2
-
- # First channel is 1's, second channel is 2's, etc.
- image = tf.constant(range(1, 3 * 2 + 1) * 6, dtype=tf.float32,
- shape=image_shape)
- boxes = tf.random_uniform((num_boxes, 4))
-
- expected_output = []
-
- # Expected output, when crop_size = [3, 2].
- expected_output.append(np.mean(
- np.expand_dims(
- np.tile(np.array([[1, 2],
- [3, 4],
- [5, 6]]), (num_boxes, 1, 1)),
- axis=-1),
- axis=(1, 2), keepdims=True))
-
- # Expected output, when crop_size = [6, 4].
- expected_output.append(np.mean(
- np.expand_dims(
- np.tile(np.array([[1, 1, 2, 2],
- [1, 1, 2, 2],
- [3, 3, 4, 4],
- [3, 3, 4, 4],
- [5, 5, 6, 6],
- [5, 5, 6, 6]]), (num_boxes, 1, 1)),
- axis=-1),
- axis=(1, 2), keepdims=True))
-
- for crop_size_mult in range(1, 3):
- crop_size = [3 * crop_size_mult, 2 * crop_size_mult]
-
- # Perform global_pooling after running the function with
- # global_pool=False.
- ps_crop = ops.position_sensitive_crop_regions(
- image, boxes, crop_size, num_spatial_bins, global_pool=False)
- ps_crop_and_pool = tf.reduce_mean(
- ps_crop, reduction_indices=(1, 2), keepdims=True)
-
- with self.test_session() as sess:
- output = sess.run(ps_crop_and_pool)
-
- self.assertAllEqual(output, expected_output[crop_size_mult - 1])
-
- def test_raise_value_error_on_non_square_block_size(self):
- num_spatial_bins = [3, 2]
- image_shape = [3, 2, 6]
- crop_size = [6, 2]
-
- image = tf.constant(1, dtype=tf.float32, shape=image_shape)
- boxes = tf.constant([[0, 0, 1, 1]], dtype=tf.float32)
-
- with self.assertRaisesRegexp(
- ValueError, 'Only support square bin crop size for now.'):
- ops.position_sensitive_crop_regions(
- image, boxes, crop_size, num_spatial_bins, global_pool=False)
-
-
- class OpsTestBatchPositionSensitiveCropRegions(tf.test.TestCase):
-
- def test_position_sensitive_with_single_bin(self):
- num_spatial_bins = [1, 1]
- image_shape = [2, 3, 3, 4]
- crop_size = [2, 2]
-
- image = tf.random_uniform(image_shape)
- boxes = tf.random_uniform((2, 3, 4))
- box_ind = tf.constant([0, 0, 0, 1, 1, 1], dtype=tf.int32)
-
- # When a single bin is used, position-sensitive crop and pool should be
- # the same as non-position sensitive crop and pool.
- crop = tf.image.crop_and_resize(image, tf.reshape(boxes, [-1, 4]), box_ind,
- crop_size)
- crop_and_pool = tf.reduce_mean(crop, [1, 2], keepdims=True)
- crop_and_pool = tf.reshape(crop_and_pool, [2, 3, 1, 1, 4])
-
- ps_crop_and_pool = ops.batch_position_sensitive_crop_regions(
- image, boxes, crop_size, num_spatial_bins, global_pool=True)
-
- with self.test_session() as sess:
- expected_output, output = sess.run((crop_and_pool, ps_crop_and_pool))
- self.assertAllClose(output, expected_output)
-
- def test_position_sensitive_with_global_pool_false_and_known_boxes(self):
- num_spatial_bins = [2, 2]
- image_shape = [2, 2, 2, 4]
- crop_size = [2, 2]
-
- images = tf.constant(range(1, 2 * 2 * 4 + 1) * 2, dtype=tf.float32,
- shape=image_shape)
-
- # First box contains whole image, and second box contains only first row.
- boxes = tf.constant(np.array([[[0., 0., 1., 1.]],
- [[0., 0., 0.5, 1.]]]), dtype=tf.float32)
- # box_ind = tf.constant([0, 1], dtype=tf.int32)
-
- expected_output = []
-
- # Expected output, when the box containing whole image.
- expected_output.append(
- np.reshape(np.array([[4, 7],
- [10, 13]]),
- (1, 2, 2, 1))
- )
-
- # Expected output, when the box containing only first row.
- expected_output.append(
- np.reshape(np.array([[3, 6],
- [7, 10]]),
- (1, 2, 2, 1))
- )
- expected_output = np.stack(expected_output, axis=0)
-
- ps_crop = ops.batch_position_sensitive_crop_regions(
- images, boxes, crop_size, num_spatial_bins, global_pool=False)
-
- with self.test_session() as sess:
- output = sess.run(ps_crop)
- self.assertAllEqual(output, expected_output)
-
- def test_position_sensitive_with_global_pool_false_and_single_bin(self):
- num_spatial_bins = [1, 1]
- image_shape = [2, 3, 3, 4]
- crop_size = [1, 1]
-
- images = tf.random_uniform(image_shape)
- boxes = tf.random_uniform((2, 3, 4))
- # box_ind = tf.constant([0, 0, 0, 1, 1, 1], dtype=tf.int32)
-
- # Since single_bin is used and crop_size = [1, 1] (i.e., no crop resize),
- # the outputs are the same whatever the global_pool value is.
- ps_crop_and_pool = ops.batch_position_sensitive_crop_regions(
- images, boxes, crop_size, num_spatial_bins, global_pool=True)
- ps_crop = ops.batch_position_sensitive_crop_regions(
- images, boxes, crop_size, num_spatial_bins, global_pool=False)
-
- with self.test_session() as sess:
- pooled_output, unpooled_output = sess.run((ps_crop_and_pool, ps_crop))
- self.assertAllClose(pooled_output, unpooled_output)
-
-
- class ReframeBoxMasksToImageMasksTest(tf.test.TestCase):
-
- def testZeroImageOnEmptyMask(self):
- box_masks = tf.constant([[[0, 0],
- [0, 0]]], dtype=tf.float32)
- boxes = tf.constant([[0.0, 0.0, 1.0, 1.0]], dtype=tf.float32)
- image_masks = ops.reframe_box_masks_to_image_masks(box_masks, boxes,
- image_height=4,
- image_width=4)
- np_expected_image_masks = np.array([[[0, 0, 0, 0],
- [0, 0, 0, 0],
- [0, 0, 0, 0],
- [0, 0, 0, 0]]], dtype=np.float32)
- with self.test_session() as sess:
- np_image_masks = sess.run(image_masks)
- self.assertAllClose(np_image_masks, np_expected_image_masks)
-
- def testZeroBoxMasks(self):
- box_masks = tf.zeros([0, 3, 3], dtype=tf.float32)
- boxes = tf.zeros([0, 4], dtype=tf.float32)
- image_masks = ops.reframe_box_masks_to_image_masks(box_masks, boxes,
- image_height=4,
- image_width=4)
- with self.test_session() as sess:
- np_image_masks = sess.run(image_masks)
- self.assertAllEqual(np_image_masks.shape, np.array([0, 4, 4]))
-
- def testMaskIsCenteredInImageWhenBoxIsCentered(self):
- box_masks = tf.constant([[[1, 1],
- [1, 1]]], dtype=tf.float32)
- boxes = tf.constant([[0.25, 0.25, 0.75, 0.75]], dtype=tf.float32)
- image_masks = ops.reframe_box_masks_to_image_masks(box_masks, boxes,
- image_height=4,
- image_width=4)
- np_expected_image_masks = np.array([[[0, 0, 0, 0],
- [0, 1, 1, 0],
- [0, 1, 1, 0],
- [0, 0, 0, 0]]], dtype=np.float32)
- with self.test_session() as sess:
- np_image_masks = sess.run(image_masks)
- self.assertAllClose(np_image_masks, np_expected_image_masks)
-
- def testMaskOffCenterRemainsOffCenterInImage(self):
- box_masks = tf.constant([[[1, 0],
- [0, 1]]], dtype=tf.float32)
- boxes = tf.constant([[0.25, 0.5, 0.75, 1.0]], dtype=tf.float32)
- image_masks = ops.reframe_box_masks_to_image_masks(box_masks, boxes,
- image_height=4,
- image_width=4)
- np_expected_image_masks = np.array([[[0, 0, 0, 0],
- [0, 0, 0.6111111, 0.16666669],
- [0, 0, 0.3888889, 0.83333337],
- [0, 0, 0, 0]]], dtype=np.float32)
- with self.test_session() as sess:
- np_image_masks = sess.run(image_masks)
- self.assertAllClose(np_image_masks, np_expected_image_masks)
-
-
- class MergeBoxesWithMultipleLabelsTest(tf.test.TestCase):
-
- def testMergeBoxesWithMultipleLabels(self):
- boxes = tf.constant(
- [[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75],
- [0.25, 0.25, 0.75, 0.75]],
- dtype=tf.float32)
- class_indices = tf.constant([0, 4, 2], dtype=tf.int32)
- class_confidences = tf.constant([0.8, 0.2, 0.1], dtype=tf.float32)
- num_classes = 5
- merged_boxes, merged_classes, merged_confidences, merged_box_indices = (
- ops.merge_boxes_with_multiple_labels(
- boxes, class_indices, class_confidences, num_classes))
- expected_merged_boxes = np.array(
- [[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75]], dtype=np.float32)
- expected_merged_classes = np.array(
- [[1, 0, 1, 0, 0], [0, 0, 0, 0, 1]], dtype=np.int32)
- expected_merged_confidences = np.array(
- [[0.8, 0, 0.1, 0, 0], [0, 0, 0, 0, 0.2]], dtype=np.float32)
- expected_merged_box_indices = np.array([0, 1], dtype=np.int32)
- with self.test_session() as sess:
- (np_merged_boxes, np_merged_classes, np_merged_confidences,
- np_merged_box_indices) = sess.run(
- [merged_boxes, merged_classes, merged_confidences,
- merged_box_indices])
- self.assertAllClose(np_merged_boxes, expected_merged_boxes)
- self.assertAllClose(np_merged_classes, expected_merged_classes)
- self.assertAllClose(np_merged_confidences, expected_merged_confidences)
- self.assertAllClose(np_merged_box_indices, expected_merged_box_indices)
-
- def testMergeBoxesWithMultipleLabelsCornerCase(self):
- boxes = tf.constant(
- [[0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1],
- [1, 1, 1, 1], [1, 0, 1, 1], [0, 1, 1, 1], [0, 0, 1, 1]],
- dtype=tf.float32)
- class_indices = tf.constant([0, 1, 2, 3, 2, 1, 0, 3], dtype=tf.int32)
- class_confidences = tf.constant([0.1, 0.9, 0.2, 0.8, 0.3, 0.7, 0.4, 0.6],
- dtype=tf.float32)
- num_classes = 4
- merged_boxes, merged_classes, merged_confidences, merged_box_indices = (
- ops.merge_boxes_with_multiple_labels(
- boxes, class_indices, class_confidences, num_classes))
- expected_merged_boxes = np.array(
- [[0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]],
- dtype=np.float32)
- expected_merged_classes = np.array(
- [[1, 0, 0, 1], [1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 1]],
- dtype=np.int32)
- expected_merged_confidences = np.array(
- [[0.1, 0, 0, 0.6], [0.4, 0.9, 0, 0],
- [0, 0.7, 0.2, 0], [0, 0, 0.3, 0.8]], dtype=np.float32)
- expected_merged_box_indices = np.array([0, 1, 2, 3], dtype=np.int32)
- with self.test_session() as sess:
- (np_merged_boxes, np_merged_classes, np_merged_confidences,
- np_merged_box_indices) = sess.run(
- [merged_boxes, merged_classes, merged_confidences,
- merged_box_indices])
- self.assertAllClose(np_merged_boxes, expected_merged_boxes)
- self.assertAllClose(np_merged_classes, expected_merged_classes)
- self.assertAllClose(np_merged_confidences, expected_merged_confidences)
- self.assertAllClose(np_merged_box_indices, expected_merged_box_indices)
-
- def testMergeBoxesWithEmptyInputs(self):
- boxes = tf.zeros([0, 4], dtype=tf.float32)
- class_indices = tf.constant([], dtype=tf.int32)
- class_confidences = tf.constant([], dtype=tf.float32)
- num_classes = 5
- merged_boxes, merged_classes, merged_confidences, merged_box_indices = (
- ops.merge_boxes_with_multiple_labels(
- boxes, class_indices, class_confidences, num_classes))
- with self.test_session() as sess:
- (np_merged_boxes, np_merged_classes, np_merged_confidences,
- np_merged_box_indices) = sess.run(
- [merged_boxes, merged_classes, merged_confidences,
- merged_box_indices])
- self.assertAllEqual(np_merged_boxes.shape, [0, 4])
- self.assertAllEqual(np_merged_classes.shape, [0, 5])
- self.assertAllEqual(np_merged_confidences.shape, [0, 5])
- self.assertAllEqual(np_merged_box_indices.shape, [0])
-
- def testMergeBoxesWithMultipleLabelsUsesInt64(self):
- boxes = tf.constant(
- [[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75],
- [0.25, 0.25, 0.75, 0.75]],
- dtype=tf.float32)
- class_indices = tf.constant([0, 4, 2], dtype=tf.int32)
- class_confidences = tf.constant([0.8, 0.2, 0.1], dtype=tf.float32)
- num_classes = 5
- ops.merge_boxes_with_multiple_labels(
- boxes, class_indices, class_confidences, num_classes)
-
- graph = tf.get_default_graph()
-
- def assert_dtype_is_int64(op_name):
- op = graph.get_operation_by_name(op_name)
- self.assertEqual(op.get_attr('dtype'), tf.int64)
-
- def assert_t_is_int64(op_name):
- op = graph.get_operation_by_name(op_name)
- self.assertEqual(op.get_attr('T'), tf.int64)
-
- assert_dtype_is_int64('map/TensorArray')
- assert_dtype_is_int64('map/TensorArray_1')
- assert_dtype_is_int64('map/while/TensorArrayReadV3')
- assert_t_is_int64('map/while/TensorArrayWrite/TensorArrayWriteV3')
- assert_t_is_int64(
- 'map/TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3')
- assert_dtype_is_int64('map/TensorArrayStack/TensorArrayGatherV3')
-
-
- class NearestNeighborUpsamplingTest(test_case.TestCase):
-
- def test_upsampling_with_single_scale(self):
-
- def graph_fn(inputs):
- custom_op_output = ops.nearest_neighbor_upsampling(inputs, scale=2)
- return custom_op_output
- inputs = np.reshape(np.arange(4).astype(np.float32), [1, 2, 2, 1])
- custom_op_output = self.execute(graph_fn, [inputs])
-
- expected_output = [[[[0], [0], [1], [1]],
- [[0], [0], [1], [1]],
- [[2], [2], [3], [3]],
- [[2], [2], [3], [3]]]]
- self.assertAllClose(custom_op_output, expected_output)
-
- def test_upsampling_with_separate_height_width_scales(self):
-
- def graph_fn(inputs):
- custom_op_output = ops.nearest_neighbor_upsampling(inputs,
- height_scale=2,
- width_scale=3)
- return custom_op_output
- inputs = np.reshape(np.arange(4).astype(np.float32), [1, 2, 2, 1])
- custom_op_output = self.execute(graph_fn, [inputs])
-
- expected_output = [[[[0], [0], [0], [1], [1], [1]],
- [[0], [0], [0], [1], [1], [1]],
- [[2], [2], [2], [3], [3], [3]],
- [[2], [2], [2], [3], [3], [3]]]]
- self.assertAllClose(custom_op_output, expected_output)
-
-
- class MatmulGatherOnZerothAxis(test_case.TestCase):
-
- def test_gather_2d(self):
-
- def graph_fn(params, indices):
- return ops.matmul_gather_on_zeroth_axis(params, indices)
-
- params = np.array([[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12],
- [0, 1, 0, 0]], dtype=np.float32)
- indices = np.array([2, 2, 1], dtype=np.int32)
- expected_output = np.array([[9, 10, 11, 12], [9, 10, 11, 12], [5, 6, 7, 8]])
- gather_output = self.execute(graph_fn, [params, indices])
- self.assertAllClose(gather_output, expected_output)
-
- def test_gather_3d(self):
-
- def graph_fn(params, indices):
- return ops.matmul_gather_on_zeroth_axis(params, indices)
-
- params = np.array([[[1, 2], [3, 4]],
- [[5, 6], [7, 8]],
- [[9, 10], [11, 12]],
- [[0, 1], [0, 0]]], dtype=np.float32)
- indices = np.array([0, 3, 1], dtype=np.int32)
- expected_output = np.array([[[1, 2], [3, 4]],
- [[0, 1], [0, 0]],
- [[5, 6], [7, 8]]])
- gather_output = self.execute(graph_fn, [params, indices])
- self.assertAllClose(gather_output, expected_output)
-
- def test_gather_with_many_indices(self):
-
- def graph_fn(params, indices):
- return ops.matmul_gather_on_zeroth_axis(params, indices)
-
- params = np.array([[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12],
- [0, 1, 0, 0]], dtype=np.float32)
- indices = np.array([0, 0, 0, 0, 0, 0], dtype=np.int32)
- expected_output = np.array(6*[[1, 2, 3, 4]])
- gather_output = self.execute(graph_fn, [params, indices])
- self.assertAllClose(gather_output, expected_output)
-
- def test_gather_with_dynamic_shape_input(self):
- params_placeholder = tf.placeholder(tf.float32, shape=[None, 4])
- indices_placeholder = tf.placeholder(tf.int32, shape=[None])
- gather_result = ops.matmul_gather_on_zeroth_axis(
- params_placeholder, indices_placeholder)
- params = np.array([[1, 2, 3, 4],
- [5, 6, 7, 8],
- [9, 10, 11, 12],
- [0, 1, 0, 0]], dtype=np.float32)
- indices = np.array([0, 0, 0, 0, 0, 0])
- expected_output = np.array(6*[[1, 2, 3, 4]])
- with self.test_session() as sess:
- gather_output = sess.run(gather_result, feed_dict={
- params_placeholder: params, indices_placeholder: indices})
- self.assertAllClose(gather_output, expected_output)
-
-
- class FpnFeatureLevelsTest(test_case.TestCase):
-
- def test_correct_fpn_levels(self):
- image_size = 640
- pretraininig_image_size = 224
- image_ratio = image_size * 1.0 / pretraininig_image_size
- boxes = np.array(
- [
- [
- [0, 0, 111, 111], # Level 0.
- [0, 0, 113, 113], # Level 1.
- [0, 0, 223, 223], # Level 1.
- [0, 0, 225, 225], # Level 2.
- [0, 0, 449, 449] # Level 3.
- ],
- ],
- dtype=np.float32) / image_size
-
- def graph_fn(boxes):
- return ops.fpn_feature_levels(
- num_levels=5, unit_scale_index=2, image_ratio=image_ratio,
- boxes=boxes)
-
- levels = self.execute(graph_fn, [boxes])
- self.assertAllEqual([[0, 1, 1, 2, 3]], levels)
-
-
- class TestBfloat16ToFloat32(test_case.TestCase):
-
- def test_convert_list(self):
- var_list = [
- tf.constant([1.], dtype=tf.bfloat16),
- tf.constant([2], dtype=tf.int32)
- ]
- casted_var_list = ops.bfloat16_to_float32_nested(var_list)
- self.assertEqual(casted_var_list[0].dtype, tf.float32)
- self.assertEqual(casted_var_list[1].dtype, tf.int32)
-
- def test_convert_tensor_dict(self):
- tensor_dict = {
- 'key1': tf.constant([1.], dtype=tf.bfloat16),
- 'key2': [
- tf.constant([0.5], dtype=tf.bfloat16),
- tf.constant([7], dtype=tf.int32),
- ],
- 'key3': tf.constant([2], dtype=tf.uint8),
- }
- tensor_dict = ops.bfloat16_to_float32_nested(tensor_dict)
-
- self.assertEqual(tensor_dict['key1'].dtype, tf.float32)
- self.assertEqual(tensor_dict['key2'][0].dtype, tf.float32)
- self.assertEqual(tensor_dict['key2'][1].dtype, tf.int32)
- self.assertEqual(tensor_dict['key3'].dtype, tf.uint8)
-
-
- class TestGatherWithPaddingValues(test_case.TestCase):
-
- def test_gather_with_padding_values(self):
- indices = tf.constant([1, -1, 0, -1])
- input_tensor = tf.constant([[0, 0, 0.1, 0.1], [0, 0, 0.2, 0.2]],
- dtype=tf.float32)
- expected_gathered_tensor = [
- [0, 0, 0.2, 0.2],
- [0, 0, 0, 0],
- [0, 0, 0.1, 0.1],
- [0, 0, 0, 0],
- ]
- gathered_tensor = ops.gather_with_padding_values(
- input_tensor,
- indices=indices,
- padding_value=tf.zeros_like(input_tensor[0]))
- self.assertEqual(gathered_tensor.dtype, tf.float32)
- with self.test_session():
- gathered_tensor_np = gathered_tensor.eval()
- self.assertAllClose(expected_gathered_tensor, gathered_tensor_np)
-
-
-
-
-
-
-
- if __name__ == '__main__':
- tf.test.main()
|