|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
-
- """Tests for object_detection.utils.visualization_utils."""
- import logging
- import os
-
- import numpy as np
- import PIL.Image as Image
- import tensorflow as tf
-
- from object_detection.core import standard_fields as fields
- from object_detection.utils import visualization_utils
-
- _TESTDATA_PATH = 'object_detection/test_images'
-
-
- class VisualizationUtilsTest(tf.test.TestCase):
-
- def test_get_prime_multiplier_for_color_randomness(self):
- # Show that default multipler is not 1 and does not divide the total number
- # of standard colors.
- multiplier = visualization_utils._get_multiplier_for_color_randomness()
- self.assertNotEqual(
- 0, multiplier % len(visualization_utils.STANDARD_COLORS))
- self.assertNotEqual(1, multiplier)
-
- # Show that with 34 colors, the closest prime number to 34/10 that
- # satisfies the constraints is 5.
- visualization_utils.STANDARD_COLORS = [
- 'color_{}'.format(str(i)) for i in range(34)
- ]
- multiplier = visualization_utils._get_multiplier_for_color_randomness()
- self.assertEqual(5, multiplier)
-
- # Show that with 110 colors, the closest prime number to 110/10 that
- # satisfies the constraints is 13 (since 11 equally divides 110).
- visualization_utils.STANDARD_COLORS = [
- 'color_{}'.format(str(i)) for i in range(110)
- ]
- multiplier = visualization_utils._get_multiplier_for_color_randomness()
- self.assertEqual(13, multiplier)
-
- def create_colorful_test_image(self):
- """This function creates an image that can be used to test vis functions.
-
- It makes an image composed of four colored rectangles.
-
- Returns:
- colorful test numpy array image.
- """
- ch255 = np.full([100, 200, 1], 255, dtype=np.uint8)
- ch128 = np.full([100, 200, 1], 128, dtype=np.uint8)
- ch0 = np.full([100, 200, 1], 0, dtype=np.uint8)
- imr = np.concatenate((ch255, ch128, ch128), axis=2)
- img = np.concatenate((ch255, ch255, ch0), axis=2)
- imb = np.concatenate((ch255, ch0, ch255), axis=2)
- imw = np.concatenate((ch128, ch128, ch128), axis=2)
- imu = np.concatenate((imr, img), axis=1)
- imd = np.concatenate((imb, imw), axis=1)
- image = np.concatenate((imu, imd), axis=0)
- return image
-
- def create_test_image_with_five_channels(self):
- return np.full([100, 200, 5], 255, dtype=np.uint8)
-
- def create_test_grayscale_image(self):
- return np.full([100, 200, 1], 255, dtype=np.uint8)
-
- def test_draw_bounding_box_on_image(self):
- test_image = self.create_colorful_test_image()
- test_image = Image.fromarray(test_image)
- width_original, height_original = test_image.size
- ymin = 0.25
- ymax = 0.75
- xmin = 0.4
- xmax = 0.6
-
- visualization_utils.draw_bounding_box_on_image(test_image, ymin, xmin, ymax,
- xmax)
- width_final, height_final = test_image.size
-
- self.assertEqual(width_original, width_final)
- self.assertEqual(height_original, height_final)
-
- def test_draw_bounding_box_on_image_array(self):
- test_image = self.create_colorful_test_image()
- width_original = test_image.shape[0]
- height_original = test_image.shape[1]
- ymin = 0.25
- ymax = 0.75
- xmin = 0.4
- xmax = 0.6
-
- visualization_utils.draw_bounding_box_on_image_array(
- test_image, ymin, xmin, ymax, xmax)
- width_final = test_image.shape[0]
- height_final = test_image.shape[1]
-
- self.assertEqual(width_original, width_final)
- self.assertEqual(height_original, height_final)
-
- def test_draw_bounding_boxes_on_image(self):
- test_image = self.create_colorful_test_image()
- test_image = Image.fromarray(test_image)
- width_original, height_original = test_image.size
- boxes = np.array([[0.25, 0.75, 0.4, 0.6],
- [0.1, 0.1, 0.9, 0.9]])
-
- visualization_utils.draw_bounding_boxes_on_image(test_image, boxes)
- width_final, height_final = test_image.size
-
- self.assertEqual(width_original, width_final)
- self.assertEqual(height_original, height_final)
-
- def test_draw_bounding_boxes_on_image_array(self):
- test_image = self.create_colorful_test_image()
- width_original = test_image.shape[0]
- height_original = test_image.shape[1]
- boxes = np.array([[0.25, 0.75, 0.4, 0.6],
- [0.1, 0.1, 0.9, 0.9]])
-
- visualization_utils.draw_bounding_boxes_on_image_array(test_image, boxes)
- width_final = test_image.shape[0]
- height_final = test_image.shape[1]
-
- self.assertEqual(width_original, width_final)
- self.assertEqual(height_original, height_final)
-
- def test_draw_bounding_boxes_on_image_tensors(self):
- """Tests that bounding box utility produces reasonable results."""
- category_index = {1: {'id': 1, 'name': 'dog'}, 2: {'id': 2, 'name': 'cat'}}
-
- fname = os.path.join(_TESTDATA_PATH, 'image1.jpg')
- image_np = np.array(Image.open(fname))
- images_np = np.stack((image_np, image_np), axis=0)
- original_image_shape = [[636, 512], [636, 512]]
-
- with tf.Graph().as_default():
- images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
- image_shape = tf.constant(original_image_shape, dtype=tf.int32)
- boxes = tf.constant([[[0.4, 0.25, 0.75, 0.75], [0.5, 0.3, 0.6, 0.9]],
- [[0.25, 0.25, 0.75, 0.75], [0.1, 0.3, 0.6, 1.0]]])
- classes = tf.constant([[1, 1], [1, 2]], dtype=tf.int64)
- scores = tf.constant([[0.8, 0.1], [0.6, 0.5]])
- images_with_boxes = (
- visualization_utils.draw_bounding_boxes_on_image_tensors(
- images_tensor,
- boxes,
- classes,
- scores,
- category_index,
- original_image_spatial_shape=image_shape,
- true_image_shape=image_shape,
- min_score_thresh=0.2))
-
- with self.test_session() as sess:
- sess.run(tf.global_variables_initializer())
-
- # Write output images for visualization.
- images_with_boxes_np = sess.run(images_with_boxes)
- self.assertEqual(images_np.shape[0], images_with_boxes_np.shape[0])
- self.assertEqual(images_np.shape[3], images_with_boxes_np.shape[3])
- self.assertEqual(
- tuple(original_image_shape[0]), images_with_boxes_np.shape[1:3])
- for i in range(images_with_boxes_np.shape[0]):
- img_name = 'image_' + str(i) + '.png'
- output_file = os.path.join(self.get_temp_dir(), img_name)
- logging.info('Writing output image %d to %s', i, output_file)
- image_pil = Image.fromarray(images_with_boxes_np[i, ...])
- image_pil.save(output_file)
-
- def test_draw_bounding_boxes_on_image_tensors_with_track_ids(self):
- """Tests that bounding box utility produces reasonable results."""
- category_index = {1: {'id': 1, 'name': 'dog'}, 2: {'id': 2, 'name': 'cat'}}
-
- fname = os.path.join(_TESTDATA_PATH, 'image1.jpg')
- image_np = np.array(Image.open(fname))
- images_np = np.stack((image_np, image_np), axis=0)
- original_image_shape = [[636, 512], [636, 512]]
-
- with tf.Graph().as_default():
- images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
- image_shape = tf.constant(original_image_shape, dtype=tf.int32)
- boxes = tf.constant([[[0.4, 0.25, 0.75, 0.75],
- [0.5, 0.3, 0.7, 0.9],
- [0.7, 0.5, 0.8, 0.9]],
- [[0.41, 0.25, 0.75, 0.75],
- [0.51, 0.3, 0.7, 0.9],
- [0.75, 0.5, 0.8, 0.9]]])
- classes = tf.constant([[1, 1, 2], [1, 1, 2]], dtype=tf.int64)
- scores = tf.constant([[0.8, 0.5, 0.7], [0.6, 0.5, 0.8]])
- track_ids = tf.constant([[3, 9, 7], [3, 9, 144]], dtype=tf.int32)
- images_with_boxes = (
- visualization_utils.draw_bounding_boxes_on_image_tensors(
- images_tensor,
- boxes,
- classes,
- scores,
- category_index,
- original_image_spatial_shape=image_shape,
- true_image_shape=image_shape,
- track_ids=track_ids,
- min_score_thresh=0.2))
-
- with self.test_session() as sess:
- sess.run(tf.global_variables_initializer())
-
- # Write output images for visualization.
- images_with_boxes_np = sess.run(images_with_boxes)
- self.assertEqual(images_np.shape[0], images_with_boxes_np.shape[0])
- self.assertEqual(images_np.shape[3], images_with_boxes_np.shape[3])
- self.assertEqual(
- tuple(original_image_shape[0]), images_with_boxes_np.shape[1:3])
- for i in range(images_with_boxes_np.shape[0]):
- img_name = 'image_with_track_ids_' + str(i) + '.png'
- output_file = os.path.join(self.get_temp_dir(), img_name)
- logging.info('Writing output image %d to %s', i, output_file)
- image_pil = Image.fromarray(images_with_boxes_np[i, ...])
- image_pil.save(output_file)
-
- def test_draw_bounding_boxes_on_image_tensors_with_additional_channels(self):
- """Tests the case where input image tensor has more than 3 channels."""
- category_index = {1: {'id': 1, 'name': 'dog'}}
- image_np = self.create_test_image_with_five_channels()
- images_np = np.stack((image_np, image_np), axis=0)
-
- with tf.Graph().as_default():
- images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
- boxes = tf.constant(0, dtype=tf.float32, shape=[2, 0, 4])
- classes = tf.constant(0, dtype=tf.int64, shape=[2, 0])
- scores = tf.constant(0, dtype=tf.float32, shape=[2, 0])
- images_with_boxes = (
- visualization_utils.draw_bounding_boxes_on_image_tensors(
- images_tensor,
- boxes,
- classes,
- scores,
- category_index,
- min_score_thresh=0.2))
-
- with self.test_session() as sess:
- sess.run(tf.global_variables_initializer())
-
- final_images_np = sess.run(images_with_boxes)
- self.assertEqual((2, 100, 200, 3), final_images_np.shape)
-
- def test_draw_bounding_boxes_on_image_tensors_grayscale(self):
- """Tests the case where input image tensor has one channel."""
- category_index = {1: {'id': 1, 'name': 'dog'}}
- image_np = self.create_test_grayscale_image()
- images_np = np.stack((image_np, image_np), axis=0)
-
- with tf.Graph().as_default():
- images_tensor = tf.constant(value=images_np, dtype=tf.uint8)
- image_shape = tf.constant([[100, 200], [100, 200]], dtype=tf.int32)
- boxes = tf.constant(0, dtype=tf.float32, shape=[2, 0, 4])
- classes = tf.constant(0, dtype=tf.int64, shape=[2, 0])
- scores = tf.constant(0, dtype=tf.float32, shape=[2, 0])
- images_with_boxes = (
- visualization_utils.draw_bounding_boxes_on_image_tensors(
- images_tensor,
- boxes,
- classes,
- scores,
- category_index,
- original_image_spatial_shape=image_shape,
- true_image_shape=image_shape,
- min_score_thresh=0.2))
-
- with self.test_session() as sess:
- sess.run(tf.global_variables_initializer())
-
- final_images_np = sess.run(images_with_boxes)
- self.assertEqual((2, 100, 200, 3), final_images_np.shape)
-
- def test_draw_keypoints_on_image(self):
- test_image = self.create_colorful_test_image()
- test_image = Image.fromarray(test_image)
- width_original, height_original = test_image.size
- keypoints = [[0.25, 0.75], [0.4, 0.6], [0.1, 0.1], [0.9, 0.9]]
-
- visualization_utils.draw_keypoints_on_image(test_image, keypoints)
- width_final, height_final = test_image.size
-
- self.assertEqual(width_original, width_final)
- self.assertEqual(height_original, height_final)
-
- def test_draw_keypoints_on_image_array(self):
- test_image = self.create_colorful_test_image()
- width_original = test_image.shape[0]
- height_original = test_image.shape[1]
- keypoints = [[0.25, 0.75], [0.4, 0.6], [0.1, 0.1], [0.9, 0.9]]
-
- visualization_utils.draw_keypoints_on_image_array(test_image, keypoints)
- width_final = test_image.shape[0]
- height_final = test_image.shape[1]
-
- self.assertEqual(width_original, width_final)
- self.assertEqual(height_original, height_final)
-
- def test_draw_mask_on_image_array(self):
- test_image = np.asarray([[[0, 0, 0], [0, 0, 0]],
- [[0, 0, 0], [0, 0, 0]]], dtype=np.uint8)
- mask = np.asarray([[0, 1],
- [1, 1]], dtype=np.uint8)
- expected_result = np.asarray([[[0, 0, 0], [0, 0, 127]],
- [[0, 0, 127], [0, 0, 127]]], dtype=np.uint8)
- visualization_utils.draw_mask_on_image_array(test_image, mask,
- color='Blue', alpha=.5)
- self.assertAllEqual(test_image, expected_result)
-
- def test_add_cdf_image_summary(self):
- values = [0.1, 0.2, 0.3, 0.4, 0.42, 0.44, 0.46, 0.48, 0.50]
- visualization_utils.add_cdf_image_summary(values, 'PositiveAnchorLoss')
- cdf_image_summary = tf.get_collection(key=tf.GraphKeys.SUMMARIES)[0]
- with self.test_session():
- cdf_image_summary.eval()
-
- def test_add_hist_image_summary(self):
- values = [0.1, 0.2, 0.3, 0.4, 0.42, 0.44, 0.46, 0.48, 0.50]
- bins = [0.01 * i for i in range(101)]
- visualization_utils.add_hist_image_summary(values, bins,
- 'ScoresDistribution')
- hist_image_summary = tf.get_collection(key=tf.GraphKeys.SUMMARIES)[0]
- with self.test_session():
- hist_image_summary.eval()
-
- def test_eval_metric_ops(self):
- category_index = {1: {'id': 1, 'name': 'dog'}, 2: {'id': 2, 'name': 'cat'}}
- max_examples_to_draw = 4
- metric_op_base = 'Detections_Left_Groundtruth_Right'
- eval_metric_ops = visualization_utils.VisualizeSingleFrameDetections(
- category_index,
- max_examples_to_draw=max_examples_to_draw,
- summary_name_prefix=metric_op_base)
- original_image = tf.placeholder(tf.uint8, [4, None, None, 3])
- original_image_spatial_shape = tf.placeholder(tf.int32, [4, 2])
- true_image_shape = tf.placeholder(tf.int32, [4, 3])
- detection_boxes = tf.random_uniform([4, 20, 4],
- minval=0.0,
- maxval=1.0,
- dtype=tf.float32)
- detection_classes = tf.random_uniform([4, 20],
- minval=1,
- maxval=3,
- dtype=tf.int64)
- detection_scores = tf.random_uniform([4, 20],
- minval=0.,
- maxval=1.,
- dtype=tf.float32)
- groundtruth_boxes = tf.random_uniform([4, 8, 4],
- minval=0.0,
- maxval=1.0,
- dtype=tf.float32)
- groundtruth_classes = tf.random_uniform([4, 8],
- minval=1,
- maxval=3,
- dtype=tf.int64)
- eval_dict = {
- fields.DetectionResultFields.detection_boxes:
- detection_boxes,
- fields.DetectionResultFields.detection_classes:
- detection_classes,
- fields.DetectionResultFields.detection_scores:
- detection_scores,
- fields.InputDataFields.original_image:
- original_image,
- fields.InputDataFields.original_image_spatial_shape: (
- original_image_spatial_shape),
- fields.InputDataFields.true_image_shape: (true_image_shape),
- fields.InputDataFields.groundtruth_boxes:
- groundtruth_boxes,
- fields.InputDataFields.groundtruth_classes:
- groundtruth_classes
- }
- metric_ops = eval_metric_ops.get_estimator_eval_metric_ops(eval_dict)
- _, update_op = metric_ops[metric_ops.keys()[0]]
-
- with self.test_session() as sess:
- sess.run(tf.global_variables_initializer())
- value_ops = {}
- for key, (value_op, _) in metric_ops.iteritems():
- value_ops[key] = value_op
-
- # First run enough update steps to surpass `max_examples_to_draw`.
- for i in range(max_examples_to_draw):
- # Use a unique image shape on each eval image.
- sess.run(
- update_op,
- feed_dict={
- original_image:
- np.random.randint(
- low=0,
- high=256,
- size=(4, 6 + i, 7 + i, 3),
- dtype=np.uint8),
- original_image_spatial_shape: [[6 + i, 7 + i], [6 + i, 7 + i],
- [6 + i, 7 + i], [6 + i, 7 + i]],
- true_image_shape: [[6 + i, 7 + i, 3], [6 + i, 7 + i, 3],
- [6 + i, 7 + i, 3], [6 + i, 7 + i, 3]]
- })
- value_ops_out = sess.run(value_ops)
- for key, value_op in value_ops_out.iteritems():
- self.assertNotEqual('', value_op)
-
- # Now run fewer update steps than `max_examples_to_draw`. A single value
- # op will be the empty string, since not enough image summaries can be
- # produced.
- for i in range(max_examples_to_draw - 1):
- # Use a unique image shape on each eval image.
- sess.run(
- update_op,
- feed_dict={
- original_image:
- np.random.randint(
- low=0,
- high=256,
- size=(4, 6 + i, 7 + i, 3),
- dtype=np.uint8),
- original_image_spatial_shape: [[6 + i, 7 + i], [6 + i, 7 + i],
- [6 + i, 7 + i], [6 + i, 7 + i]],
- true_image_shape: [[6 + i, 7 + i, 3], [6 + i, 7 + i, 3],
- [6 + i, 7 + i, 3], [6 + i, 7 + i, 3]]
- })
- value_ops_out = sess.run(value_ops)
- self.assertEqual(
- '',
- value_ops_out[metric_op_base + '/' + str(max_examples_to_draw - 1)])
-
-
- if __name__ == '__main__':
- tf.test.main()
|