|
|
- syntax = "proto2";
-
- package object_detection.protos;
-
- import "object_detection/protos/optimizer.proto";
- import "object_detection/protos/preprocessor.proto";
-
- // Message for configuring DetectionModel training jobs (train.py).
- // Next id: 28
- message TrainConfig {
- // Effective batch size to use for training.
- // For TPU (or sync SGD jobs), the batch size per core (or GPU) is going to be
- // `batch_size` / number of cores (or `batch_size` / number of GPUs).
- optional uint32 batch_size = 1 [default=32];
-
- // Data augmentation options.
- repeated PreprocessingStep data_augmentation_options = 2;
-
- // Whether to synchronize replicas during training.
- optional bool sync_replicas = 3 [default=false];
-
- // How frequently to keep checkpoints.
- optional float keep_checkpoint_every_n_hours = 4 [default=10000.0];
-
- // Optimizer used to train the DetectionModel.
- optional Optimizer optimizer = 5;
-
- // If greater than 0, clips gradients by this value.
- optional float gradient_clipping_by_norm = 6 [default=0.0];
-
- // Checkpoint to restore variables from. Typically used to load feature
- // extractor variables trained outside of object detection.
- optional string fine_tune_checkpoint = 7 [default=""];
-
- // Type of checkpoint to restore variables from, e.g. 'classification' or
- // 'detection'. Provides extensibility to from_detection_checkpoint.
- // Typically used to load feature extractor variables from trained models.
- optional string fine_tune_checkpoint_type = 22 [default=""];
-
- // [Deprecated]: use fine_tune_checkpoint_type instead.
- // Specifies if the finetune checkpoint is from an object detection model.
- // If from an object detection model, the model being trained should have
- // the same parameters with the exception of the num_classes parameter.
- // If false, it assumes the checkpoint was a object classification model.
- optional bool from_detection_checkpoint = 8 [default=false, deprecated=true];
-
- // Whether to load all checkpoint vars that match model variable names and
- // sizes. This option is only available if `from_detection_checkpoint` is
- // True.
- optional bool load_all_detection_checkpoint_vars = 19 [default = false];
-
- // Number of steps to train the DetectionModel for. If 0, will train the model
- // indefinitely.
- optional uint32 num_steps = 9 [default=0];
-
- // Number of training steps between replica startup.
- // This flag must be set to 0 if sync_replicas is set to true.
- optional float startup_delay_steps = 10 [default=15];
-
- // If greater than 0, multiplies the gradient of bias variables by this
- // amount.
- optional float bias_grad_multiplier = 11 [default=0];
-
- // Variables that should be updated during training. Note that variables which
- // also match the patterns in freeze_variables will be excluded.
- repeated string update_trainable_variables = 25;
-
- // Variables that should not be updated during training. If
- // update_trainable_variables is not empty, only eliminates the included
- // variables according to freeze_variables patterns.
- repeated string freeze_variables = 12;
-
- // Number of replicas to aggregate before making parameter updates.
- optional int32 replicas_to_aggregate = 13 [default=1];
-
- // Maximum number of elements to store within a queue.
- optional int32 batch_queue_capacity = 14 [default=150, deprecated=true];
-
- // Number of threads to use for batching.
- optional int32 num_batch_queue_threads = 15 [default=8, deprecated=true];
-
- // Maximum capacity of the queue used to prefetch assembled batches.
- optional int32 prefetch_queue_capacity = 16 [default=5, deprecated=true];
-
- // If true, boxes with the same coordinates will be merged together.
- // This is useful when each box can have multiple labels.
- // Note that only Sigmoid classification losses should be used.
- optional bool merge_multiple_label_boxes = 17 [default=false];
-
- // If true, will use multiclass scores from object annotations as ground
- // truth. Currently only compatible with annotated image inputs.
- optional bool use_multiclass_scores = 24 [default = false];
-
- // Whether to add regularization loss to `total_loss`. This is true by
- // default and adds all regularization losses defined in the model to
- // `total_loss`.
- // Setting this option to false is very useful while debugging the model and
- // losses.
- optional bool add_regularization_loss = 18 [default=true];
-
- // Maximum number of boxes used during training.
- // Set this to at least the maximum amount of boxes in the input data.
- // Otherwise, it may cause "Data loss: Attempted to pad to a smaller size
- // than the input element" errors.
- optional int32 max_number_of_boxes = 20 [default=100, deprecated=true];
-
- // Whether to remove padding along `num_boxes` dimension of the groundtruth
- // tensors.
- optional bool unpad_groundtruth_tensors = 21 [default=true];
-
- // Whether to retain original images (i.e. not pre-processed) in the tensor
- // dictionary, so that they can be displayed in Tensorboard. Note that this
- // will lead to a larger memory footprint.
- optional bool retain_original_images = 23 [default=false];
-
- // Whether to use bfloat16 for training. This is currently only supported for
- // TPUs.
- optional bool use_bfloat16 = 26 [default=false];
-
- // Whether to summarize gradients.
- optional bool summarize_gradients = 27 [default=false];
- }
|