|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Tests for object_detection.data_decoders.tf_example_parser."""
-
- import numpy as np
- import numpy.testing as np_testing
- import tensorflow as tf
-
- from object_detection.core import standard_fields as fields
- from object_detection.metrics import tf_example_parser
-
-
- class TfExampleDecoderTest(tf.test.TestCase):
-
- def _Int64Feature(self, value):
- return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
-
- def _FloatFeature(self, value):
- return tf.train.Feature(float_list=tf.train.FloatList(value=value))
-
- def _BytesFeature(self, value):
- return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
-
- def testParseDetectionsAndGT(self):
- source_id = 'abc.jpg'
- # y_min, x_min, y_max, x_max
- object_bb = np.array([[0.0, 0.5, 0.3], [0.0, 0.1, 0.6], [1.0, 0.6, 0.8],
- [1.0, 0.6, 0.7]]).transpose()
- detection_bb = np.array([[0.1, 0.2], [0.0, 0.8], [1.0, 0.6],
- [1.0, 0.85]]).transpose()
-
- object_class_label = [1, 1, 2]
- object_difficult = [1, 0, 0]
- object_group_of = [0, 0, 1]
- verified_labels = [1, 2, 3, 4]
- detection_class_label = [2, 1]
- detection_score = [0.5, 0.3]
- features = {
- fields.TfExampleFields.source_id:
- self._BytesFeature(source_id),
- fields.TfExampleFields.object_bbox_ymin:
- self._FloatFeature(object_bb[:, 0].tolist()),
- fields.TfExampleFields.object_bbox_xmin:
- self._FloatFeature(object_bb[:, 1].tolist()),
- fields.TfExampleFields.object_bbox_ymax:
- self._FloatFeature(object_bb[:, 2].tolist()),
- fields.TfExampleFields.object_bbox_xmax:
- self._FloatFeature(object_bb[:, 3].tolist()),
- fields.TfExampleFields.detection_bbox_ymin:
- self._FloatFeature(detection_bb[:, 0].tolist()),
- fields.TfExampleFields.detection_bbox_xmin:
- self._FloatFeature(detection_bb[:, 1].tolist()),
- fields.TfExampleFields.detection_bbox_ymax:
- self._FloatFeature(detection_bb[:, 2].tolist()),
- fields.TfExampleFields.detection_bbox_xmax:
- self._FloatFeature(detection_bb[:, 3].tolist()),
- fields.TfExampleFields.detection_class_label:
- self._Int64Feature(detection_class_label),
- fields.TfExampleFields.detection_score:
- self._FloatFeature(detection_score),
- }
-
- example = tf.train.Example(features=tf.train.Features(feature=features))
- parser = tf_example_parser.TfExampleDetectionAndGTParser()
-
- results_dict = parser.parse(example)
- self.assertIsNone(results_dict)
-
- features[fields.TfExampleFields.object_class_label] = (
- self._Int64Feature(object_class_label))
- features[fields.TfExampleFields.object_difficult] = (
- self._Int64Feature(object_difficult))
-
- example = tf.train.Example(features=tf.train.Features(feature=features))
- results_dict = parser.parse(example)
-
- self.assertIsNotNone(results_dict)
- self.assertEqual(source_id, results_dict[fields.DetectionResultFields.key])
- np_testing.assert_almost_equal(
- object_bb, results_dict[fields.InputDataFields.groundtruth_boxes])
- np_testing.assert_almost_equal(
- detection_bb,
- results_dict[fields.DetectionResultFields.detection_boxes])
- np_testing.assert_almost_equal(
- detection_score,
- results_dict[fields.DetectionResultFields.detection_scores])
- np_testing.assert_almost_equal(
- detection_class_label,
- results_dict[fields.DetectionResultFields.detection_classes])
- np_testing.assert_almost_equal(
- object_difficult,
- results_dict[fields.InputDataFields.groundtruth_difficult])
- np_testing.assert_almost_equal(
- object_class_label,
- results_dict[fields.InputDataFields.groundtruth_classes])
-
- parser = tf_example_parser.TfExampleDetectionAndGTParser()
-
- features[fields.TfExampleFields.object_group_of] = (
- self._Int64Feature(object_group_of))
-
- example = tf.train.Example(features=tf.train.Features(feature=features))
- results_dict = parser.parse(example)
- self.assertIsNotNone(results_dict)
- np_testing.assert_equal(
- object_group_of,
- results_dict[fields.InputDataFields.groundtruth_group_of])
-
- features[fields.TfExampleFields.image_class_label] = (
- self._Int64Feature(verified_labels))
-
- example = tf.train.Example(features=tf.train.Features(feature=features))
- results_dict = parser.parse(example)
- self.assertIsNotNone(results_dict)
- np_testing.assert_equal(
- verified_labels,
- results_dict[fields.InputDataFields.groundtruth_image_classes])
-
- def testParseString(self):
- string_val = 'abc'
- features = {'string': self._BytesFeature(string_val)}
- example = tf.train.Example(features=tf.train.Features(feature=features))
-
- parser = tf_example_parser.StringParser('string')
- result = parser.parse(example)
- self.assertIsNotNone(result)
- self.assertEqual(result, string_val)
-
- parser = tf_example_parser.StringParser('another_string')
- result = parser.parse(example)
- self.assertIsNone(result)
-
- def testParseFloat(self):
- float_array_val = [1.5, 1.4, 2.0]
- features = {'floats': self._FloatFeature(float_array_val)}
- example = tf.train.Example(features=tf.train.Features(feature=features))
-
- parser = tf_example_parser.FloatParser('floats')
- result = parser.parse(example)
- self.assertIsNotNone(result)
- np_testing.assert_almost_equal(result, float_array_val)
-
- parser = tf_example_parser.StringParser('another_floats')
- result = parser.parse(example)
- self.assertIsNone(result)
-
- def testInt64Parser(self):
- int_val = [1, 2, 3]
- features = {'ints': self._Int64Feature(int_val)}
- example = tf.train.Example(features=tf.train.Features(feature=features))
-
- parser = tf_example_parser.Int64Parser('ints')
- result = parser.parse(example)
- self.assertIsNotNone(result)
- np_testing.assert_almost_equal(result, int_val)
-
- parser = tf_example_parser.Int64Parser('another_ints')
- result = parser.parse(example)
- self.assertIsNone(result)
-
- def testBoundingBoxParser(self):
- bounding_boxes = np.array([[0.0, 0.5, 0.3], [0.0, 0.1, 0.6],
- [1.0, 0.6, 0.8], [1.0, 0.6, 0.7]]).transpose()
- features = {
- 'ymin': self._FloatFeature(bounding_boxes[:, 0]),
- 'xmin': self._FloatFeature(bounding_boxes[:, 1]),
- 'ymax': self._FloatFeature(bounding_boxes[:, 2]),
- 'xmax': self._FloatFeature(bounding_boxes[:, 3])
- }
-
- example = tf.train.Example(features=tf.train.Features(feature=features))
-
- parser = tf_example_parser.BoundingBoxParser('xmin', 'ymin', 'xmax', 'ymax')
- result = parser.parse(example)
- self.assertIsNotNone(result)
- np_testing.assert_almost_equal(result, bounding_boxes)
-
- parser = tf_example_parser.BoundingBoxParser('xmin', 'ymin', 'xmax',
- 'another_ymax')
- result = parser.parse(example)
- self.assertIsNone(result)
-
-
- if __name__ == '__main__':
- tf.test.main()
|