|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Tests for object_detection.utils.per_image_vrd_evaluation."""
- import numpy as np
- import tensorflow as tf
-
- from object_detection.utils import per_image_vrd_evaluation
-
-
- class SingleClassPerImageVrdEvaluationTest(tf.test.TestCase):
-
- def setUp(self):
- matching_iou_threshold = 0.5
- self.eval = per_image_vrd_evaluation.PerImageVRDEvaluation(
- matching_iou_threshold)
- box_data_type = np.dtype([('subject', 'f4', (4,)), ('object', 'f4', (4,))])
-
- self.detected_box_tuples = np.array(
- [([0, 0, 1.1, 1], [1, 1, 2, 2]), ([0, 0, 1, 1], [1, 1, 2, 2]),
- ([1, 1, 2, 2], [0, 0, 1.1, 1])],
- dtype=box_data_type)
- self.detected_scores = np.array([0.8, 0.2, 0.1], dtype=float)
- self.groundtruth_box_tuples = np.array(
- [([0, 0, 1, 1], [1, 1, 2, 2])], dtype=box_data_type)
-
- def test_tp_fp_eval(self):
- tp_fp_labels = self.eval._compute_tp_fp_for_single_class(
- self.detected_box_tuples, self.groundtruth_box_tuples)
- expected_tp_fp_labels = np.array([True, False, False], dtype=bool)
- self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels))
-
- def test_tp_fp_eval_empty_gt(self):
- box_data_type = np.dtype([('subject', 'f4', (4,)), ('object', 'f4', (4,))])
-
- tp_fp_labels = self.eval._compute_tp_fp_for_single_class(
- self.detected_box_tuples, np.array([], dtype=box_data_type))
- expected_tp_fp_labels = np.array([False, False, False], dtype=bool)
- self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels))
-
-
- class MultiClassPerImageVrdEvaluationTest(tf.test.TestCase):
-
- def setUp(self):
- matching_iou_threshold = 0.5
- self.eval = per_image_vrd_evaluation.PerImageVRDEvaluation(
- matching_iou_threshold)
- box_data_type = np.dtype([('subject', 'f4', (4,)), ('object', 'f4', (4,))])
- label_data_type = np.dtype([('subject', 'i4'), ('object', 'i4'),
- ('relation', 'i4')])
-
- self.detected_box_tuples = np.array(
- [([0, 0, 1, 1], [1, 1, 2, 2]), ([0, 0, 1.1, 1], [1, 1, 2, 2]),
- ([1, 1, 2, 2], [0, 0, 1.1, 1]), ([0, 0, 1, 1], [3, 4, 5, 6])],
- dtype=box_data_type)
- self.detected_class_tuples = np.array(
- [(1, 2, 3), (1, 2, 3), (1, 2, 3), (1, 4, 5)], dtype=label_data_type)
- self.detected_scores = np.array([0.2, 0.8, 0.1, 0.5], dtype=float)
-
- self.groundtruth_box_tuples = np.array(
- [([0, 0, 1, 1], [1, 1, 2, 2]), ([1, 1, 2, 2], [0, 0, 1.1, 1]),
- ([0, 0, 1, 1], [3, 4, 5, 5.5])],
- dtype=box_data_type)
- self.groundtruth_class_tuples = np.array(
- [(1, 2, 3), (1, 7, 3), (1, 4, 5)], dtype=label_data_type)
-
- def test_tp_fp_eval(self):
- scores, tp_fp_labels, mapping = self.eval.compute_detection_tp_fp(
- self.detected_box_tuples, self.detected_scores,
- self.detected_class_tuples, self.groundtruth_box_tuples,
- self.groundtruth_class_tuples)
-
- expected_scores = np.array([0.8, 0.5, 0.2, 0.1], dtype=float)
- expected_tp_fp_labels = np.array([True, True, False, False], dtype=bool)
- expected_mapping = np.array([1, 3, 0, 2])
-
- self.assertTrue(np.allclose(expected_scores, scores))
- self.assertTrue(np.allclose(expected_tp_fp_labels, tp_fp_labels))
- self.assertTrue(np.allclose(expected_mapping, mapping))
-
-
- if __name__ == '__main__':
- tf.test.main()
|