|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
-
- """Tests for object_detection.models.model_builder."""
-
- from absl.testing import parameterized
-
- import tensorflow as tf
-
- from google.protobuf import text_format
- from object_detection.builders import model_builder
- from object_detection.meta_architectures import faster_rcnn_meta_arch
- from object_detection.meta_architectures import rfcn_meta_arch
- from object_detection.meta_architectures import ssd_meta_arch
- from object_detection.models import ssd_resnet_v1_fpn_feature_extractor as ssd_resnet_v1_fpn
- from object_detection.protos import hyperparams_pb2
- from object_detection.protos import losses_pb2
- from object_detection.protos import model_pb2
-
-
- class ModelBuilderTest(tf.test.TestCase, parameterized.TestCase):
-
- def create_model(self, model_config, is_training=True):
- """Builds a DetectionModel based on the model config.
-
- Args:
- model_config: A model.proto object containing the config for the desired
- DetectionModel.
- is_training: True if this model is being built for training purposes.
-
- Returns:
- DetectionModel based on the config.
- """
- return model_builder.build(model_config, is_training=is_training)
-
- def create_default_ssd_model_proto(self):
- """Creates a DetectionModel proto with ssd model fields populated."""
- model_text_proto = """
- ssd {
- feature_extractor {
- type: 'ssd_inception_v2'
- conv_hyperparams {
- regularizer {
- l2_regularizer {
- }
- }
- initializer {
- truncated_normal_initializer {
- }
- }
- }
- override_base_feature_extractor_hyperparams: true
- }
- box_coder {
- faster_rcnn_box_coder {
- }
- }
- matcher {
- argmax_matcher {
- }
- }
- similarity_calculator {
- iou_similarity {
- }
- }
- anchor_generator {
- ssd_anchor_generator {
- aspect_ratios: 1.0
- }
- }
- image_resizer {
- fixed_shape_resizer {
- height: 320
- width: 320
- }
- }
- box_predictor {
- convolutional_box_predictor {
- conv_hyperparams {
- regularizer {
- l2_regularizer {
- }
- }
- initializer {
- truncated_normal_initializer {
- }
- }
- }
- }
- }
- loss {
- classification_loss {
- weighted_softmax {
- }
- }
- localization_loss {
- weighted_smooth_l1 {
- }
- }
- }
- }"""
- model_proto = model_pb2.DetectionModel()
- text_format.Merge(model_text_proto, model_proto)
- return model_proto
-
- def create_default_faster_rcnn_model_proto(self):
- """Creates a DetectionModel proto with FasterRCNN model fields populated."""
- model_text_proto = """
- faster_rcnn {
- inplace_batchnorm_update: false
- num_classes: 3
- image_resizer {
- keep_aspect_ratio_resizer {
- min_dimension: 600
- max_dimension: 1024
- }
- }
- feature_extractor {
- type: 'faster_rcnn_resnet101'
- }
- first_stage_anchor_generator {
- grid_anchor_generator {
- scales: [0.25, 0.5, 1.0, 2.0]
- aspect_ratios: [0.5, 1.0, 2.0]
- height_stride: 16
- width_stride: 16
- }
- }
- first_stage_box_predictor_conv_hyperparams {
- regularizer {
- l2_regularizer {
- }
- }
- initializer {
- truncated_normal_initializer {
- }
- }
- }
- initial_crop_size: 14
- maxpool_kernel_size: 2
- maxpool_stride: 2
- second_stage_box_predictor {
- mask_rcnn_box_predictor {
- conv_hyperparams {
- regularizer {
- l2_regularizer {
- }
- }
- initializer {
- truncated_normal_initializer {
- }
- }
- }
- fc_hyperparams {
- op: FC
- regularizer {
- l2_regularizer {
- }
- }
- initializer {
- truncated_normal_initializer {
- }
- }
- }
- }
- }
- second_stage_post_processing {
- batch_non_max_suppression {
- score_threshold: 0.01
- iou_threshold: 0.6
- max_detections_per_class: 100
- max_total_detections: 300
- }
- score_converter: SOFTMAX
- }
- }"""
- model_proto = model_pb2.DetectionModel()
- text_format.Merge(model_text_proto, model_proto)
- return model_proto
-
- def test_create_ssd_models_from_config(self):
- model_proto = self.create_default_ssd_model_proto()
- ssd_feature_extractor_map = {}
- ssd_feature_extractor_map.update(
- model_builder.SSD_FEATURE_EXTRACTOR_CLASS_MAP)
- ssd_feature_extractor_map.update(
- model_builder.SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP)
-
- for extractor_type, extractor_class in ssd_feature_extractor_map.items():
- model_proto.ssd.feature_extractor.type = extractor_type
- model = model_builder.build(model_proto, is_training=True)
- self.assertIsInstance(model, ssd_meta_arch.SSDMetaArch)
- self.assertIsInstance(model._feature_extractor, extractor_class)
-
- def test_create_ssd_fpn_model_from_config(self):
- model_proto = self.create_default_ssd_model_proto()
- model_proto.ssd.feature_extractor.type = 'ssd_resnet101_v1_fpn'
- model_proto.ssd.feature_extractor.fpn.min_level = 3
- model_proto.ssd.feature_extractor.fpn.max_level = 7
- model = model_builder.build(model_proto, is_training=True)
- self.assertIsInstance(model._feature_extractor,
- ssd_resnet_v1_fpn.SSDResnet101V1FpnFeatureExtractor)
- self.assertEqual(model._feature_extractor._fpn_min_level, 3)
- self.assertEqual(model._feature_extractor._fpn_max_level, 7)
-
-
- @parameterized.named_parameters(
- {
- 'testcase_name': 'mask_rcnn_with_matmul',
- 'use_matmul_crop_and_resize': False,
- 'enable_mask_prediction': True
- },
- {
- 'testcase_name': 'mask_rcnn_without_matmul',
- 'use_matmul_crop_and_resize': True,
- 'enable_mask_prediction': True
- },
- {
- 'testcase_name': 'faster_rcnn_with_matmul',
- 'use_matmul_crop_and_resize': False,
- 'enable_mask_prediction': False
- },
- {
- 'testcase_name': 'faster_rcnn_without_matmul',
- 'use_matmul_crop_and_resize': True,
- 'enable_mask_prediction': False
- },
- )
- def test_create_faster_rcnn_models_from_config(
- self, use_matmul_crop_and_resize, enable_mask_prediction):
- model_proto = self.create_default_faster_rcnn_model_proto()
- faster_rcnn_config = model_proto.faster_rcnn
- faster_rcnn_config.use_matmul_crop_and_resize = use_matmul_crop_and_resize
- if enable_mask_prediction:
- faster_rcnn_config.second_stage_mask_prediction_loss_weight = 3.0
- mask_predictor_config = (
- faster_rcnn_config.second_stage_box_predictor.mask_rcnn_box_predictor)
- mask_predictor_config.predict_instance_masks = True
-
- for extractor_type, extractor_class in (
- model_builder.FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP.items()):
- faster_rcnn_config.feature_extractor.type = extractor_type
- model = model_builder.build(model_proto, is_training=True)
- self.assertIsInstance(model, faster_rcnn_meta_arch.FasterRCNNMetaArch)
- self.assertIsInstance(model._feature_extractor, extractor_class)
- if enable_mask_prediction:
- self.assertAlmostEqual(model._second_stage_mask_loss_weight, 3.0)
-
- def test_create_faster_rcnn_model_from_config_with_example_miner(self):
- model_proto = self.create_default_faster_rcnn_model_proto()
- model_proto.faster_rcnn.hard_example_miner.num_hard_examples = 64
- model = model_builder.build(model_proto, is_training=True)
- self.assertIsNotNone(model._hard_example_miner)
-
- def test_create_rfcn_model_from_config(self):
- model_proto = self.create_default_faster_rcnn_model_proto()
- rfcn_predictor_config = (
- model_proto.faster_rcnn.second_stage_box_predictor.rfcn_box_predictor)
- rfcn_predictor_config.conv_hyperparams.op = hyperparams_pb2.Hyperparams.CONV
- for extractor_type, extractor_class in (
- model_builder.FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP.items()):
- model_proto.faster_rcnn.feature_extractor.type = extractor_type
- model = model_builder.build(model_proto, is_training=True)
- self.assertIsInstance(model, rfcn_meta_arch.RFCNMetaArch)
- self.assertIsInstance(model._feature_extractor, extractor_class)
-
- def test_invalid_model_config_proto(self):
- model_proto = ''
- with self.assertRaisesRegexp(
- ValueError, 'model_config not of type model_pb2.DetectionModel.'):
- model_builder.build(model_proto, is_training=True)
-
- def test_unknown_meta_architecture(self):
- model_proto = model_pb2.DetectionModel()
- with self.assertRaisesRegexp(ValueError, 'Unknown meta architecture'):
- model_builder.build(model_proto, is_training=True)
-
- def test_unknown_ssd_feature_extractor(self):
- model_proto = self.create_default_ssd_model_proto()
- model_proto.ssd.feature_extractor.type = 'unknown_feature_extractor'
- with self.assertRaisesRegexp(ValueError, 'Unknown ssd feature_extractor'):
- model_builder.build(model_proto, is_training=True)
-
- def test_unknown_faster_rcnn_feature_extractor(self):
- model_proto = self.create_default_faster_rcnn_model_proto()
- model_proto.faster_rcnn.feature_extractor.type = 'unknown_feature_extractor'
- with self.assertRaisesRegexp(ValueError,
- 'Unknown Faster R-CNN feature_extractor'):
- model_builder.build(model_proto, is_training=True)
-
- def test_invalid_first_stage_nms_iou_threshold(self):
- model_proto = self.create_default_faster_rcnn_model_proto()
- model_proto.faster_rcnn.first_stage_nms_iou_threshold = 1.1
- with self.assertRaisesRegexp(ValueError,
- r'iou_threshold not in \[0, 1\.0\]'):
- model_builder.build(model_proto, is_training=True)
- model_proto.faster_rcnn.first_stage_nms_iou_threshold = -0.1
- with self.assertRaisesRegexp(ValueError,
- r'iou_threshold not in \[0, 1\.0\]'):
- model_builder.build(model_proto, is_training=True)
-
- def test_invalid_second_stage_batch_size(self):
- model_proto = self.create_default_faster_rcnn_model_proto()
- model_proto.faster_rcnn.first_stage_max_proposals = 1
- model_proto.faster_rcnn.second_stage_batch_size = 2
- with self.assertRaisesRegexp(
- ValueError, 'second_stage_batch_size should be no greater '
- 'than first_stage_max_proposals.'):
- model_builder.build(model_proto, is_training=True)
-
- def test_invalid_faster_rcnn_batchnorm_update(self):
- model_proto = self.create_default_faster_rcnn_model_proto()
- model_proto.faster_rcnn.inplace_batchnorm_update = True
- with self.assertRaisesRegexp(ValueError,
- 'inplace batchnorm updates not supported'):
- model_builder.build(model_proto, is_training=True)
-
-
- if __name__ == '__main__':
- tf.test.main()
|