|
|
- # Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
-
- """Builder function for post processing operations."""
- import functools
-
- import tensorflow as tf
- from object_detection.builders import calibration_builder
- from object_detection.core import post_processing
- from object_detection.protos import post_processing_pb2
-
-
- def build(post_processing_config):
- """Builds callables for post-processing operations.
-
- Builds callables for non-max suppression, score conversion, and (optionally)
- calibration based on the configuration.
-
- Non-max suppression callable takes `boxes`, `scores`, and optionally
- `clip_window`, `parallel_iterations` `masks, and `scope` as inputs. It returns
- `nms_boxes`, `nms_scores`, `nms_classes` `nms_masks` and `num_detections`. See
- post_processing.batch_multiclass_non_max_suppression for the type and shape
- of these tensors.
-
- Score converter callable should be called with `input` tensor. The callable
- returns the output from one of 3 tf operations based on the configuration -
- tf.identity, tf.sigmoid or tf.nn.softmax. If a calibration config is provided,
- score_converter also applies calibration transformations, as defined in
- calibration_builder.py. See tensorflow documentation for argument and return
- value descriptions.
-
- Args:
- post_processing_config: post_processing.proto object containing the
- parameters for the post-processing operations.
-
- Returns:
- non_max_suppressor_fn: Callable for non-max suppression.
- score_converter_fn: Callable for score conversion.
-
- Raises:
- ValueError: if the post_processing_config is of incorrect type.
- """
- if not isinstance(post_processing_config, post_processing_pb2.PostProcessing):
- raise ValueError('post_processing_config not of type '
- 'post_processing_pb2.Postprocessing.')
- non_max_suppressor_fn = _build_non_max_suppressor(
- post_processing_config.batch_non_max_suppression)
- score_converter_fn = _build_score_converter(
- post_processing_config.score_converter,
- post_processing_config.logit_scale)
- if post_processing_config.HasField('calibration_config'):
- score_converter_fn = _build_calibrated_score_converter(
- score_converter_fn,
- post_processing_config.calibration_config)
- return non_max_suppressor_fn, score_converter_fn
-
-
- def _build_non_max_suppressor(nms_config):
- """Builds non-max suppresson based on the nms config.
-
- Args:
- nms_config: post_processing_pb2.PostProcessing.BatchNonMaxSuppression proto.
-
- Returns:
- non_max_suppressor_fn: Callable non-max suppressor.
-
- Raises:
- ValueError: On incorrect iou_threshold or on incompatible values of
- max_total_detections and max_detections_per_class.
- """
- if nms_config.iou_threshold < 0 or nms_config.iou_threshold > 1.0:
- raise ValueError('iou_threshold not in [0, 1.0].')
- if nms_config.max_detections_per_class > nms_config.max_total_detections:
- raise ValueError('max_detections_per_class should be no greater than '
- 'max_total_detections.')
-
- non_max_suppressor_fn = functools.partial(
- post_processing.batch_multiclass_non_max_suppression,
- score_thresh=nms_config.score_threshold,
- iou_thresh=nms_config.iou_threshold,
- max_size_per_class=nms_config.max_detections_per_class,
- max_total_size=nms_config.max_total_detections,
- use_static_shapes=nms_config.use_static_shapes)
- return non_max_suppressor_fn
-
-
- def _score_converter_fn_with_logit_scale(tf_score_converter_fn, logit_scale):
- """Create a function to scale logits then apply a Tensorflow function."""
- def score_converter_fn(logits):
- scaled_logits = tf.divide(logits, logit_scale, name='scale_logits')
- return tf_score_converter_fn(scaled_logits, name='convert_scores')
- score_converter_fn.__name__ = '%s_with_logit_scale' % (
- tf_score_converter_fn.__name__)
- return score_converter_fn
-
-
- def _build_score_converter(score_converter_config, logit_scale):
- """Builds score converter based on the config.
-
- Builds one of [tf.identity, tf.sigmoid, tf.softmax] score converters based on
- the config.
-
- Args:
- score_converter_config: post_processing_pb2.PostProcessing.score_converter.
- logit_scale: temperature to use for SOFTMAX score_converter.
-
- Returns:
- Callable score converter op.
-
- Raises:
- ValueError: On unknown score converter.
- """
- if score_converter_config == post_processing_pb2.PostProcessing.IDENTITY:
- return _score_converter_fn_with_logit_scale(tf.identity, logit_scale)
- if score_converter_config == post_processing_pb2.PostProcessing.SIGMOID:
- return _score_converter_fn_with_logit_scale(tf.sigmoid, logit_scale)
- if score_converter_config == post_processing_pb2.PostProcessing.SOFTMAX:
- return _score_converter_fn_with_logit_scale(tf.nn.softmax, logit_scale)
- raise ValueError('Unknown score converter.')
-
-
- def _build_calibrated_score_converter(score_converter_fn, calibration_config):
- """Wraps a score_converter_fn, adding a calibration step.
-
- Builds a score converter function witha calibration transformation according
- to calibration_builder.py. Calibration applies positive monotonic
- transformations to inputs (i.e. score ordering is strictly preserved or
- adjacent scores are mapped to the same score). When calibration is
- class-agnostic, the highest-scoring class remains unchanged, unless two
- adjacent scores are mapped to the same value and one class arbitrarily
- selected to break the tie. In per-class calibration, it's possible (though
- rare in practice) that the highest-scoring class will change, since positive
- monotonicity is only required to hold within each class.
-
- Args:
- score_converter_fn: callable that takes logit scores as input.
- calibration_config: post_processing_pb2.PostProcessing.calibration_config.
-
- Returns:
- Callable calibrated score coverter op.
- """
- calibration_fn = calibration_builder.build(calibration_config)
- def calibrated_score_converter_fn(logits):
- converted_logits = score_converter_fn(logits)
- return calibration_fn(converted_logits)
- calibrated_score_converter_fn.__name__ = (
- 'calibrate_with_%s' % calibration_config.WhichOneof('calibrator'))
- return calibrated_score_converter_fn
|