|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
-
- """Tests for object_detection.core.bipartite_matcher."""
-
- import tensorflow as tf
-
- from object_detection.matchers import bipartite_matcher
-
-
- class GreedyBipartiteMatcherTest(tf.test.TestCase):
-
- def test_get_expected_matches_when_all_rows_are_valid(self):
- similarity_matrix = tf.constant([[0.50, 0.1, 0.8], [0.15, 0.2, 0.3]])
- valid_rows = tf.ones([2], dtype=tf.bool)
- expected_match_results = [-1, 1, 0]
-
- matcher = bipartite_matcher.GreedyBipartiteMatcher()
- match = matcher.match(similarity_matrix, valid_rows=valid_rows)
- with self.test_session() as sess:
- match_results_out = sess.run(match._match_results)
- self.assertAllEqual(match_results_out, expected_match_results)
-
- def test_get_expected_matches_with_all_rows_be_default(self):
- similarity_matrix = tf.constant([[0.50, 0.1, 0.8], [0.15, 0.2, 0.3]])
- expected_match_results = [-1, 1, 0]
-
- matcher = bipartite_matcher.GreedyBipartiteMatcher()
- match = matcher.match(similarity_matrix)
- with self.test_session() as sess:
- match_results_out = sess.run(match._match_results)
- self.assertAllEqual(match_results_out, expected_match_results)
-
- def test_get_no_matches_with_zero_valid_rows(self):
- similarity_matrix = tf.constant([[0.50, 0.1, 0.8], [0.15, 0.2, 0.3]])
- valid_rows = tf.zeros([2], dtype=tf.bool)
- expected_match_results = [-1, -1, -1]
-
- matcher = bipartite_matcher.GreedyBipartiteMatcher()
- match = matcher.match(similarity_matrix, valid_rows)
- with self.test_session() as sess:
- match_results_out = sess.run(match._match_results)
- self.assertAllEqual(match_results_out, expected_match_results)
-
- def test_get_expected_matches_with_only_one_valid_row(self):
- similarity_matrix = tf.constant([[0.50, 0.1, 0.8], [0.15, 0.2, 0.3]])
- valid_rows = tf.constant([True, False], dtype=tf.bool)
- expected_match_results = [-1, -1, 0]
-
- matcher = bipartite_matcher.GreedyBipartiteMatcher()
- match = matcher.match(similarity_matrix, valid_rows)
- with self.test_session() as sess:
- match_results_out = sess.run(match._match_results)
- self.assertAllEqual(match_results_out, expected_match_results)
-
- def test_get_expected_matches_with_only_one_valid_row_at_bottom(self):
- similarity_matrix = tf.constant([[0.15, 0.2, 0.3], [0.50, 0.1, 0.8]])
- valid_rows = tf.constant([False, True], dtype=tf.bool)
- expected_match_results = [-1, -1, 0]
-
- matcher = bipartite_matcher.GreedyBipartiteMatcher()
- match = matcher.match(similarity_matrix, valid_rows)
- with self.test_session() as sess:
- match_results_out = sess.run(match._match_results)
- self.assertAllEqual(match_results_out, expected_match_results)
-
-
- if __name__ == '__main__':
- tf.test.main()
|