|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """Tests for tensorflow_model.object_detection.metrics.coco_tools."""
- import json
- import os
- import re
- import numpy as np
-
- from pycocotools import mask
-
- import tensorflow as tf
-
- from object_detection.metrics import coco_tools
-
-
- class CocoToolsTest(tf.test.TestCase):
-
- def setUp(self):
- groundtruth_annotations_list = [
- {
- 'id': 1,
- 'image_id': 'first',
- 'category_id': 1,
- 'bbox': [100., 100., 100., 100.],
- 'area': 100.**2,
- 'iscrowd': 0
- },
- {
- 'id': 2,
- 'image_id': 'second',
- 'category_id': 1,
- 'bbox': [50., 50., 50., 50.],
- 'area': 50.**2,
- 'iscrowd': 0
- },
- ]
- image_list = [{'id': 'first'}, {'id': 'second'}]
- category_list = [{'id': 0, 'name': 'person'},
- {'id': 1, 'name': 'cat'},
- {'id': 2, 'name': 'dog'}]
- self._groundtruth_dict = {
- 'annotations': groundtruth_annotations_list,
- 'images': image_list,
- 'categories': category_list
- }
-
- self._detections_list = [
- {
- 'image_id': 'first',
- 'category_id': 1,
- 'bbox': [100., 100., 100., 100.],
- 'score': .8
- },
- {
- 'image_id': 'second',
- 'category_id': 1,
- 'bbox': [50., 50., 50., 50.],
- 'score': .7
- },
- ]
-
- def testCocoWrappers(self):
- groundtruth = coco_tools.COCOWrapper(self._groundtruth_dict)
- detections = groundtruth.LoadAnnotations(self._detections_list)
- evaluator = coco_tools.COCOEvalWrapper(groundtruth, detections)
- summary_metrics, _ = evaluator.ComputeMetrics()
- self.assertAlmostEqual(1.0, summary_metrics['Precision/mAP'])
-
- def testExportGroundtruthToCOCO(self):
- image_ids = ['first', 'second']
- groundtruth_boxes = [np.array([[100, 100, 200, 200]], np.float),
- np.array([[50, 50, 100, 100]], np.float)]
- groundtruth_classes = [np.array([1], np.int32), np.array([1], np.int32)]
- categories = [{'id': 0, 'name': 'person'},
- {'id': 1, 'name': 'cat'},
- {'id': 2, 'name': 'dog'}]
- output_path = os.path.join(tf.test.get_temp_dir(), 'groundtruth.json')
- result = coco_tools.ExportGroundtruthToCOCO(
- image_ids,
- groundtruth_boxes,
- groundtruth_classes,
- categories,
- output_path=output_path)
- self.assertDictEqual(result, self._groundtruth_dict)
- with tf.gfile.GFile(output_path, 'r') as f:
- written_result = f.read()
- # The json output should have floats written to 4 digits of precision.
- matcher = re.compile(r'"bbox":\s+\[\n\s+\d+.\d\d\d\d,', re.MULTILINE)
- self.assertTrue(matcher.findall(written_result))
- written_result = json.loads(written_result)
- self.assertAlmostEqual(result, written_result)
-
- def testExportDetectionsToCOCO(self):
- image_ids = ['first', 'second']
- detections_boxes = [np.array([[100, 100, 200, 200]], np.float),
- np.array([[50, 50, 100, 100]], np.float)]
- detections_scores = [np.array([.8], np.float), np.array([.7], np.float)]
- detections_classes = [np.array([1], np.int32), np.array([1], np.int32)]
- categories = [{'id': 0, 'name': 'person'},
- {'id': 1, 'name': 'cat'},
- {'id': 2, 'name': 'dog'}]
- output_path = os.path.join(tf.test.get_temp_dir(), 'detections.json')
- result = coco_tools.ExportDetectionsToCOCO(
- image_ids,
- detections_boxes,
- detections_scores,
- detections_classes,
- categories,
- output_path=output_path)
- self.assertListEqual(result, self._detections_list)
- with tf.gfile.GFile(output_path, 'r') as f:
- written_result = f.read()
- # The json output should have floats written to 4 digits of precision.
- matcher = re.compile(r'"bbox":\s+\[\n\s+\d+.\d\d\d\d,', re.MULTILINE)
- self.assertTrue(matcher.findall(written_result))
- written_result = json.loads(written_result)
- self.assertAlmostEqual(result, written_result)
-
- def testExportSegmentsToCOCO(self):
- image_ids = ['first', 'second']
- detection_masks = [np.array(
- [[[0, 1, 0, 1], [0, 1, 1, 0], [0, 0, 0, 1], [0, 1, 0, 1]]],
- dtype=np.uint8), np.array(
- [[[0, 1, 0, 1], [0, 1, 1, 0], [0, 0, 0, 1], [0, 1, 0, 1]]],
- dtype=np.uint8)]
-
- for i, detection_mask in enumerate(detection_masks):
- detection_masks[i] = detection_mask[:, :, :, None]
-
- detection_scores = [np.array([.8], np.float), np.array([.7], np.float)]
- detection_classes = [np.array([1], np.int32), np.array([1], np.int32)]
-
- categories = [{'id': 0, 'name': 'person'},
- {'id': 1, 'name': 'cat'},
- {'id': 2, 'name': 'dog'}]
- output_path = os.path.join(tf.test.get_temp_dir(), 'segments.json')
- result = coco_tools.ExportSegmentsToCOCO(
- image_ids,
- detection_masks,
- detection_scores,
- detection_classes,
- categories,
- output_path=output_path)
- with tf.gfile.GFile(output_path, 'r') as f:
- written_result = f.read()
- written_result = json.loads(written_result)
- mask_load = mask.decode([written_result[0]['segmentation']])
- self.assertTrue(np.allclose(mask_load, detection_masks[0]))
- self.assertAlmostEqual(result, written_result)
-
- def testExportKeypointsToCOCO(self):
- image_ids = ['first', 'second']
- detection_keypoints = [
- np.array(
- [[[100, 200], [300, 400], [500, 600]],
- [[50, 150], [250, 350], [450, 550]]], dtype=np.int32),
- np.array(
- [[[110, 210], [310, 410], [510, 610]],
- [[60, 160], [260, 360], [460, 560]]], dtype=np.int32)]
-
- detection_scores = [np.array([.8, 0.2], np.float),
- np.array([.7, 0.3], np.float)]
- detection_classes = [np.array([1, 1], np.int32), np.array([1, 1], np.int32)]
-
- categories = [{'id': 1, 'name': 'person', 'num_keypoints': 3},
- {'id': 2, 'name': 'cat'},
- {'id': 3, 'name': 'dog'}]
-
- output_path = os.path.join(tf.test.get_temp_dir(), 'keypoints.json')
- result = coco_tools.ExportKeypointsToCOCO(
- image_ids,
- detection_keypoints,
- detection_scores,
- detection_classes,
- categories,
- output_path=output_path)
-
- with tf.gfile.GFile(output_path, 'r') as f:
- written_result = f.read()
- written_result = json.loads(written_result)
- self.assertAlmostEqual(result, written_result)
-
- def testSingleImageDetectionBoxesExport(self):
- boxes = np.array([[0, 0, 1, 1],
- [0, 0, .5, .5],
- [.5, .5, 1, 1]], dtype=np.float32)
- classes = np.array([1, 2, 3], dtype=np.int32)
- scores = np.array([0.8, 0.2, 0.7], dtype=np.float32)
- coco_boxes = np.array([[0, 0, 1, 1],
- [0, 0, .5, .5],
- [.5, .5, .5, .5]], dtype=np.float32)
- coco_annotations = coco_tools.ExportSingleImageDetectionBoxesToCoco(
- image_id='first_image',
- category_id_set=set([1, 2, 3]),
- detection_boxes=boxes,
- detection_classes=classes,
- detection_scores=scores)
- for i, annotation in enumerate(coco_annotations):
- self.assertEqual(annotation['image_id'], 'first_image')
- self.assertEqual(annotation['category_id'], classes[i])
- self.assertAlmostEqual(annotation['score'], scores[i])
- self.assertTrue(np.all(np.isclose(annotation['bbox'], coco_boxes[i])))
-
- def testSingleImageDetectionMaskExport(self):
- masks = np.array(
- [[[1, 1,], [1, 1]],
- [[0, 0], [0, 1]],
- [[0, 0], [0, 0]]], dtype=np.uint8)
- classes = np.array([1, 2, 3], dtype=np.int32)
- scores = np.array([0.8, 0.2, 0.7], dtype=np.float32)
- coco_annotations = coco_tools.ExportSingleImageDetectionMasksToCoco(
- image_id='first_image',
- category_id_set=set([1, 2, 3]),
- detection_classes=classes,
- detection_scores=scores,
- detection_masks=masks)
- expected_counts = ['04', '31', '4']
- for i, mask_annotation in enumerate(coco_annotations):
- self.assertEqual(mask_annotation['segmentation']['counts'],
- expected_counts[i])
- self.assertTrue(np.all(np.equal(mask.decode(
- mask_annotation['segmentation']), masks[i])))
- self.assertEqual(mask_annotation['image_id'], 'first_image')
- self.assertEqual(mask_annotation['category_id'], classes[i])
- self.assertAlmostEqual(mask_annotation['score'], scores[i])
-
- def testSingleImageGroundtruthExport(self):
- masks = np.array(
- [[[1, 1,], [1, 1]],
- [[0, 0], [0, 1]],
- [[0, 0], [0, 0]]], dtype=np.uint8)
- boxes = np.array([[0, 0, 1, 1],
- [0, 0, .5, .5],
- [.5, .5, 1, 1]], dtype=np.float32)
- coco_boxes = np.array([[0, 0, 1, 1],
- [0, 0, .5, .5],
- [.5, .5, .5, .5]], dtype=np.float32)
- classes = np.array([1, 2, 3], dtype=np.int32)
- is_crowd = np.array([0, 1, 0], dtype=np.int32)
- next_annotation_id = 1
- expected_counts = ['04', '31', '4']
-
- # Tests exporting without passing in is_crowd (for backward compatibility).
- coco_annotations = coco_tools.ExportSingleImageGroundtruthToCoco(
- image_id='first_image',
- category_id_set=set([1, 2, 3]),
- next_annotation_id=next_annotation_id,
- groundtruth_boxes=boxes,
- groundtruth_classes=classes,
- groundtruth_masks=masks)
- for i, annotation in enumerate(coco_annotations):
- self.assertEqual(annotation['segmentation']['counts'],
- expected_counts[i])
- self.assertTrue(np.all(np.equal(mask.decode(
- annotation['segmentation']), masks[i])))
- self.assertTrue(np.all(np.isclose(annotation['bbox'], coco_boxes[i])))
- self.assertEqual(annotation['image_id'], 'first_image')
- self.assertEqual(annotation['category_id'], classes[i])
- self.assertEqual(annotation['id'], i + next_annotation_id)
-
- # Tests exporting with is_crowd.
- coco_annotations = coco_tools.ExportSingleImageGroundtruthToCoco(
- image_id='first_image',
- category_id_set=set([1, 2, 3]),
- next_annotation_id=next_annotation_id,
- groundtruth_boxes=boxes,
- groundtruth_classes=classes,
- groundtruth_masks=masks,
- groundtruth_is_crowd=is_crowd)
- for i, annotation in enumerate(coco_annotations):
- self.assertEqual(annotation['segmentation']['counts'],
- expected_counts[i])
- self.assertTrue(np.all(np.equal(mask.decode(
- annotation['segmentation']), masks[i])))
- self.assertTrue(np.all(np.isclose(annotation['bbox'], coco_boxes[i])))
- self.assertEqual(annotation['image_id'], 'first_image')
- self.assertEqual(annotation['category_id'], classes[i])
- self.assertEqual(annotation['iscrowd'], is_crowd[i])
- self.assertEqual(annotation['id'], i + next_annotation_id)
-
-
- if __name__ == '__main__':
- tf.test.main()
|