|
|
- # Copyright 2017 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
-
- """Box Head.
-
- Contains Box prediction head classes for different meta architectures.
- All the box prediction heads have a predict function that receives the
- `features` as the first argument and returns `box_encodings`.
- """
- import functools
- import tensorflow as tf
-
- from object_detection.predictors.heads import head
-
- slim = tf.contrib.slim
-
-
- class MaskRCNNBoxHead(head.Head):
- """Box prediction head.
-
- Please refer to Mask RCNN paper:
- https://arxiv.org/abs/1703.06870
- """
-
- def __init__(self,
- is_training,
- num_classes,
- fc_hyperparams_fn,
- use_dropout,
- dropout_keep_prob,
- box_code_size,
- share_box_across_classes=False):
- """Constructor.
-
- Args:
- is_training: Indicates whether the BoxPredictor is in training mode.
- num_classes: number of classes. Note that num_classes *does not*
- include the background category, so if groundtruth labels take values
- in {0, 1, .., K-1}, num_classes=K (and not K+1, even though the
- assigned classification targets can range from {0,... K}).
- fc_hyperparams_fn: A function to generate tf-slim arg_scope with
- hyperparameters for fully connected ops.
- use_dropout: Option to use dropout or not. Note that a single dropout
- op is applied here prior to both box and class predictions, which stands
- in contrast to the ConvolutionalBoxPredictor below.
- dropout_keep_prob: Keep probability for dropout.
- This is only used if use_dropout is True.
- box_code_size: Size of encoding for each box.
- share_box_across_classes: Whether to share boxes across classes rather
- than use a different box for each class.
- """
- super(MaskRCNNBoxHead, self).__init__()
- self._is_training = is_training
- self._num_classes = num_classes
- self._fc_hyperparams_fn = fc_hyperparams_fn
- self._use_dropout = use_dropout
- self._dropout_keep_prob = dropout_keep_prob
- self._box_code_size = box_code_size
- self._share_box_across_classes = share_box_across_classes
-
- def predict(self, features, num_predictions_per_location=1):
- """Predicts boxes.
-
- Args:
- features: A float tensor of shape [batch_size, height, width,
- channels] containing features for a batch of images.
- num_predictions_per_location: Int containing number of predictions per
- location.
-
- Returns:
- box_encodings: A float tensor of shape
- [batch_size, 1, num_classes, code_size] representing the location of the
- objects.
-
- Raises:
- ValueError: If num_predictions_per_location is not 1.
- """
- if num_predictions_per_location != 1:
- raise ValueError('Only num_predictions_per_location=1 is supported')
- spatial_averaged_roi_pooled_features = tf.reduce_mean(
- features, [1, 2], keep_dims=True, name='AvgPool')
- flattened_roi_pooled_features = slim.flatten(
- spatial_averaged_roi_pooled_features)
- if self._use_dropout:
- flattened_roi_pooled_features = slim.dropout(
- flattened_roi_pooled_features,
- keep_prob=self._dropout_keep_prob,
- is_training=self._is_training)
- number_of_boxes = 1
- if not self._share_box_across_classes:
- number_of_boxes = self._num_classes
-
- with slim.arg_scope(self._fc_hyperparams_fn()):
- box_encodings = slim.fully_connected(
- flattened_roi_pooled_features,
- number_of_boxes * self._box_code_size,
- activation_fn=None,
- scope='BoxEncodingPredictor')
- box_encodings = tf.reshape(box_encodings,
- [-1, 1, number_of_boxes, self._box_code_size])
- return box_encodings
-
-
- class ConvolutionalBoxHead(head.Head):
- """Convolutional box prediction head."""
-
- def __init__(self,
- is_training,
- box_code_size,
- kernel_size,
- use_depthwise=False):
- """Constructor.
-
- Args:
- is_training: Indicates whether the BoxPredictor is in training mode.
- box_code_size: Size of encoding for each box.
- kernel_size: Size of final convolution kernel. If the
- spatial resolution of the feature map is smaller than the kernel size,
- then the kernel size is automatically set to be
- min(feature_width, feature_height).
- use_depthwise: Whether to use depthwise convolutions for prediction
- steps. Default is False.
-
- Raises:
- ValueError: if min_depth > max_depth.
- """
- super(ConvolutionalBoxHead, self).__init__()
- self._is_training = is_training
- self._box_code_size = box_code_size
- self._kernel_size = kernel_size
- self._use_depthwise = use_depthwise
-
- def predict(self, features, num_predictions_per_location):
- """Predicts boxes.
-
- Args:
- features: A float tensor of shape [batch_size, height, width, channels]
- containing image features.
- num_predictions_per_location: Number of box predictions to be made per
- spatial location. Int specifying number of boxes per location.
-
- Returns:
- box_encodings: A float tensors of shape
- [batch_size, num_anchors, q, code_size] representing the location of
- the objects, where q is 1 or the number of classes.
- """
- net = features
- if self._use_depthwise:
- box_encodings = slim.separable_conv2d(
- net, None, [self._kernel_size, self._kernel_size],
- padding='SAME', depth_multiplier=1, stride=1,
- rate=1, scope='BoxEncodingPredictor_depthwise')
- box_encodings = slim.conv2d(
- box_encodings,
- num_predictions_per_location * self._box_code_size, [1, 1],
- activation_fn=None,
- normalizer_fn=None,
- normalizer_params=None,
- scope='BoxEncodingPredictor')
- else:
- box_encodings = slim.conv2d(
- net, num_predictions_per_location * self._box_code_size,
- [self._kernel_size, self._kernel_size],
- activation_fn=None,
- normalizer_fn=None,
- normalizer_params=None,
- scope='BoxEncodingPredictor')
- batch_size = features.get_shape().as_list()[0]
- if batch_size is None:
- batch_size = tf.shape(features)[0]
- box_encodings = tf.reshape(box_encodings,
- [batch_size, -1, 1, self._box_code_size])
- return box_encodings
-
-
- # TODO(alirezafathi): See if possible to unify Weight Shared with regular
- # convolutional box head.
- class WeightSharedConvolutionalBoxHead(head.Head):
- """Weight shared convolutional box prediction head.
-
- This head allows sharing the same set of parameters (weights) when called more
- then once on different feature maps.
- """
-
- def __init__(self,
- box_code_size,
- kernel_size=3,
- use_depthwise=False,
- box_encodings_clip_range=None):
- """Constructor.
-
- Args:
- box_code_size: Size of encoding for each box.
- kernel_size: Size of final convolution kernel.
- use_depthwise: Whether to use depthwise convolutions for prediction steps.
- Default is False.
- box_encodings_clip_range: Min and max values for clipping box_encodings.
- """
- super(WeightSharedConvolutionalBoxHead, self).__init__()
- self._box_code_size = box_code_size
- self._kernel_size = kernel_size
- self._use_depthwise = use_depthwise
- self._box_encodings_clip_range = box_encodings_clip_range
-
- def predict(self, features, num_predictions_per_location):
- """Predicts boxes.
-
- Args:
- features: A float tensor of shape [batch_size, height, width, channels]
- containing image features.
- num_predictions_per_location: Number of box predictions to be made per
- spatial location.
-
- Returns:
- box_encodings: A float tensor of shape
- [batch_size, num_anchors, code_size] representing the location of
- the objects.
- """
- box_encodings_net = features
- if self._use_depthwise:
- conv_op = functools.partial(slim.separable_conv2d, depth_multiplier=1)
- else:
- conv_op = slim.conv2d
- box_encodings = conv_op(
- box_encodings_net,
- num_predictions_per_location * self._box_code_size,
- [self._kernel_size, self._kernel_size],
- activation_fn=None, stride=1, padding='SAME',
- normalizer_fn=None,
- scope='BoxPredictor')
- batch_size = features.get_shape().as_list()[0]
- if batch_size is None:
- batch_size = tf.shape(features)[0]
- # Clipping the box encodings to make the inference graph TPU friendly.
- if self._box_encodings_clip_range is not None:
- box_encodings = tf.clip_by_value(
- box_encodings, self._box_encodings_clip_range.min,
- self._box_encodings_clip_range.max)
- box_encodings = tf.reshape(box_encodings,
- [batch_size, -1, self._box_code_size])
- return box_encodings
|