You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

143 lines
13 KiB

6 years ago
  1. # Tensorflow detection model zoo
  2. We provide a collection of detection models pre-trained on the [COCO
  3. dataset](http://mscoco.org), the [Kitti dataset](http://www.cvlibs.net/datasets/kitti/),
  4. the [Open Images dataset](https://github.com/openimages/dataset), the
  5. [AVA v2.1 dataset](https://research.google.com/ava/) and the
  6. [iNaturalist Species Detection Dataset](https://github.com/visipedia/inat_comp/blob/master/2017/README.md#bounding-boxes).
  7. These models can be useful for out-of-the-box inference if you are interested in
  8. categories already in those datasets. They are also useful for initializing your
  9. models when training on novel datasets.
  10. In the table below, we list each such pre-trained model including:
  11. * a model name that corresponds to a config file that was used to train this
  12. model in the `samples/configs` directory,
  13. * a download link to a tar.gz file containing the pre-trained model,
  14. * model speed --- we report running time in ms per 600x600 image (including all
  15. pre and post-processing), but please be
  16. aware that these timings depend highly on one's specific hardware
  17. configuration (these timings were performed using an Nvidia
  18. GeForce GTX TITAN X card) and should be treated more as relative timings in
  19. many cases. Also note that desktop GPU timing does not always reflect mobile
  20. run time. For example Mobilenet V2 is faster on mobile devices than Mobilenet
  21. V1, but is slightly slower on desktop GPU.
  22. * detector performance on subset of the COCO validation set or Open Images test split as measured by the dataset-specific mAP measure.
  23. Here, higher is better, and we only report bounding box mAP rounded to the
  24. nearest integer.
  25. * Output types (`Boxes`, and `Masks` if applicable )
  26. You can un-tar each tar.gz file via, e.g.,:
  27. ```
  28. tar -xzvf ssd_mobilenet_v1_coco.tar.gz
  29. ```
  30. Inside the un-tar'ed directory, you will find:
  31. * a graph proto (`graph.pbtxt`)
  32. * a checkpoint
  33. (`model.ckpt.data-00000-of-00001`, `model.ckpt.index`, `model.ckpt.meta`)
  34. * a frozen graph proto with weights baked into the graph as constants
  35. (`frozen_inference_graph.pb`) to be used for out of the box inference
  36. (try this out in the Jupyter notebook!)
  37. * a config file (`pipeline.config`) which was used to generate the graph. These
  38. directly correspond to a config file in the
  39. [samples/configs](https://github.com/tensorflow/models/tree/master/research/object_detection/samples/configs)) directory but often with a modified score threshold. In the case
  40. of the heavier Faster R-CNN models, we also provide a version of the model
  41. that uses a highly reduced number of proposals for speed.
  42. Some remarks on frozen inference graphs:
  43. * If you try to evaluate the frozen graph, you may find performance numbers for
  44. some of the models to be slightly lower than what we report in the below
  45. tables. This is because we discard detections with scores below a
  46. threshold (typically 0.3) when creating the frozen graph. This corresponds
  47. effectively to picking a point on the precision recall curve of
  48. a detector (and discarding the part past that point), which negatively impacts
  49. standard mAP metrics.
  50. * Our frozen inference graphs are generated using the
  51. [v1.12.0](https://github.com/tensorflow/tensorflow/tree/v1.12.0)
  52. release version of Tensorflow and we do not guarantee that these will work
  53. with other versions; this being said, each frozen inference graph can be
  54. regenerated using your current version of Tensorflow by re-running the
  55. [exporter](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/exporting_models.md),
  56. pointing it at the model directory as well as the corresponding config file in
  57. [samples/configs](https://github.com/tensorflow/models/tree/master/research/object_detection/samples/configs).
  58. ## COCO-trained models
  59. | Model name | Speed (ms) | COCO mAP[^1] | Outputs |
  60. | ------------ | :--------------: | :--------------: | :-------------: |
  61. | [ssd_mobilenet_v1_coco](http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2018_01_28.tar.gz) | 30 | 21 | Boxes |
  62. | [ssd_mobilenet_v1_0.75_depth_coco ☆](http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_0.75_depth_300x300_coco14_sync_2018_07_03.tar.gz) | 26 | 18 | Boxes |
  63. | [ssd_mobilenet_v1_quantized_coco ☆](http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_quantized_300x300_coco14_sync_2018_07_18.tar.gz) | 29 | 18 | Boxes |
  64. | [ssd_mobilenet_v1_0.75_depth_quantized_coco ☆](http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_0.75_depth_quantized_300x300_coco14_sync_2018_07_18.tar.gz) | 29 | 16 | Boxes |
  65. | [ssd_mobilenet_v1_ppn_coco ☆](http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_ppn_shared_box_predictor_300x300_coco14_sync_2018_07_03.tar.gz) | 26 | 20 | Boxes |
  66. | [ssd_mobilenet_v1_fpn_coco ☆](http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_fpn_shared_box_predictor_640x640_coco14_sync_2018_07_03.tar.gz) | 56 | 32 | Boxes |
  67. | [ssd_resnet_50_fpn_coco ☆](http://download.tensorflow.org/models/object_detection/ssd_resnet50_v1_fpn_shared_box_predictor_640x640_coco14_sync_2018_07_03.tar.gz) | 76 | 35 | Boxes |
  68. | [ssd_mobilenet_v2_coco](http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v2_coco_2018_03_29.tar.gz) | 31 | 22 | Boxes |
  69. | [ssd_mobilenet_v2_quantized_coco](http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v2_quantized_300x300_coco_2019_01_03.tar.gz) | 29 | 22 | Boxes |
  70. | [ssdlite_mobilenet_v2_coco](http://download.tensorflow.org/models/object_detection/ssdlite_mobilenet_v2_coco_2018_05_09.tar.gz) | 27 | 22 | Boxes |
  71. | [ssd_inception_v2_coco](http://download.tensorflow.org/models/object_detection/ssd_inception_v2_coco_2018_01_28.tar.gz) | 42 | 24 | Boxes |
  72. | [faster_rcnn_inception_v2_coco](http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_v2_coco_2018_01_28.tar.gz) | 58 | 28 | Boxes |
  73. | [faster_rcnn_resnet50_coco](http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet50_coco_2018_01_28.tar.gz) | 89 | 30 | Boxes |
  74. | [faster_rcnn_resnet50_lowproposals_coco](http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet50_lowproposals_coco_2018_01_28.tar.gz) | 64 | | Boxes |
  75. | [rfcn_resnet101_coco](http://download.tensorflow.org/models/object_detection/rfcn_resnet101_coco_2018_01_28.tar.gz) | 92 | 30 | Boxes |
  76. | [faster_rcnn_resnet101_coco](http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_coco_2018_01_28.tar.gz) | 106 | 32 | Boxes |
  77. | [faster_rcnn_resnet101_lowproposals_coco](http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_lowproposals_coco_2018_01_28.tar.gz) | 82 | | Boxes |
  78. | [faster_rcnn_inception_resnet_v2_atrous_coco](http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_resnet_v2_atrous_coco_2018_01_28.tar.gz) | 620 | 37 | Boxes |
  79. | [faster_rcnn_inception_resnet_v2_atrous_lowproposals_coco](http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_resnet_v2_atrous_lowproposals_coco_2018_01_28.tar.gz) | 241 | | Boxes |
  80. | [faster_rcnn_nas](http://download.tensorflow.org/models/object_detection/faster_rcnn_nas_coco_2018_01_28.tar.gz) | 1833 | 43 | Boxes |
  81. | [faster_rcnn_nas_lowproposals_coco](http://download.tensorflow.org/models/object_detection/faster_rcnn_nas_lowproposals_coco_2018_01_28.tar.gz) | 540 | | Boxes |
  82. | [mask_rcnn_inception_resnet_v2_atrous_coco](http://download.tensorflow.org/models/object_detection/mask_rcnn_inception_resnet_v2_atrous_coco_2018_01_28.tar.gz) | 771 | 36 | Masks |
  83. | [mask_rcnn_inception_v2_coco](http://download.tensorflow.org/models/object_detection/mask_rcnn_inception_v2_coco_2018_01_28.tar.gz) | 79 | 25 | Masks |
  84. | [mask_rcnn_resnet101_atrous_coco](http://download.tensorflow.org/models/object_detection/mask_rcnn_resnet101_atrous_coco_2018_01_28.tar.gz) | 470 | 33 | Masks |
  85. | [mask_rcnn_resnet50_atrous_coco](http://download.tensorflow.org/models/object_detection/mask_rcnn_resnet50_atrous_coco_2018_01_28.tar.gz) | 343 | 29 | Masks |
  86. Note: The asterisk (☆) at the end of model name indicates that this model supports TPU training.
  87. Note: If you download the tar.gz file of quantized models and un-tar, you will get different set of files - a checkpoint, a config file and tflite frozen graphs (txt/binary).
  88. ## Kitti-trained models
  89. Model name | Speed (ms) | Pascal mAP@0.5 | Outputs
  90. ----------------------------------------------------------------------------------------------------------------------------------------------------------------- | :---: | :-------------: | :-----:
  91. [faster_rcnn_resnet101_kitti](http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_kitti_2018_01_28.tar.gz) | 79 | 87 | Boxes
  92. ## Open Images-trained models
  93. Model name | Speed (ms) | Open Images mAP@0.5[^2] | Outputs
  94. --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :--------: | :---------------------: | :-----:
  95. [faster_rcnn_inception_resnet_v2_atrous_oidv2](http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_resnet_v2_atrous_oid_2018_01_28.tar.gz) | 727 | 37 | Boxes
  96. [faster_rcnn_inception_resnet_v2_atrous_lowproposals_oidv2](http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_resnet_v2_atrous_lowproposals_oid_2018_01_28.tar.gz) | 347 | | Boxes
  97. [facessd_mobilenet_v2_quantized_open_image_v4](http://download.tensorflow.org/models/object_detection/facessd_mobilenet_v2_quantized_320x320_open_image_v4.tar.gz) [^3] | 20 | 73 (faces) | Boxes
  98. Model name | Speed (ms) | Open Images mAP@0.5[^4] | Outputs
  99. --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :--------: | :---------------------: | :-----:
  100. [faster_rcnn_inception_resnet_v2_atrous_oidv4](http://download.tensorflow.org/models/object_detection/faster_rcnn_inception_resnet_v2_atrous_oid_v4_2018_12_12.tar.gz) | 425 | 54 | Boxes
  101. [ssd_mobilenetv2_oidv4](http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v2_oid_v4_2018_12_12.tar.gz) | 89 | 36 | Boxes
  102. [ssd_resnet_101_fpn_oidv4](http://download.tensorflow.org/models/object_detection/ssd_resnet101_v1_fpn_shared_box_predictor_oid_512x512_sync_2019_01_20.tar.gz) | 237 | 38 | Boxes
  103. ## iNaturalist Species-trained models
  104. Model name | Speed (ms) | Pascal mAP@0.5 | Outputs
  105. ----------------------------------------------------------------------------------------------------------------------------------------------------------------- | :---: | :-------------: | :-----:
  106. [faster_rcnn_resnet101_fgvc](http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_fgvc_2018_07_19.tar.gz) | 395 | 58 | Boxes
  107. [faster_rcnn_resnet50_fgvc](http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet50_fgvc_2018_07_19.tar.gz) | 366 | 55 | Boxes
  108. ## AVA v2.1 trained models
  109. Model name | Speed (ms) | Pascal mAP@0.5 | Outputs
  110. ----------------------------------------------------------------------------------------------------------------------------------------------------------------- | :---: | :-------------: | :-----:
  111. [faster_rcnn_resnet101_ava_v2.1](http://download.tensorflow.org/models/object_detection/faster_rcnn_resnet101_ava_v2.1_2018_04_30.tar.gz) | 93 | 11 | Boxes
  112. [^1]: See [MSCOCO evaluation protocol](http://cocodataset.org/#detections-eval). The COCO mAP numbers here are evaluated on COCO 14 minival set (note that our split is different from COCO 17 Val). A full list of image ids used in our split could be fould [here](https://github.com/tensorflow/models/blob/master/research/object_detection/data/mscoco_minival_ids.txt).
  113. [^2]: This is PASCAL mAP with a slightly different way of true positives computation: see [Open Images evaluation protocols](evaluation_protocols.md), oid_V2_detection_metrics.
  114. [^3]: Non-face boxes are dropped during training and non-face groundtruth boxes are ignored when evaluating.
  115. [^4]: This is Open Images Challenge metric: see [Open Images evaluation protocols](evaluation_protocols.md), oid_challenge_detection_metrics.