- #!/usr/bin/python3
-
- import pickle
- import threading
- import sys
- import cv2
- import os
- import numpy as np
-
- from utils import label_map_util
- from utils import visualization_utils as vis_util
-
- if sys.platform == "win32":
-
- import tensorflow as tf
- from distutils.version import StrictVersion
-
- if StrictVersion(tf.__version__) < StrictVersion('1.12.0'):
- raise ImportError('Please upgrade your TensorFlow installation to v1.12.*.')
- else:
- import psutil
-
- import json
-
- import base64
- from PIL import Image
- from io import BytesIO
-
- switch = 1
-
- import socket
-
- # This is needed since the notebook is stored in the object_detection folder.
- sys.path.append("..")
- import time
- from object_detection.utils import ops as utils_ops
-
-
-
- # What model to download.
-
-
- encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), 90]
-
- #MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17' #not even worth trying
- #MODEL_NAME = "ssd_inception_v2_coco_2017_11_17" # not bad and fast
- MODEL_NAME = "rfcn_resnet101_coco_11_06_2017" # WORKS BEST BUT takes 4 times longer per image
- #MODEL_NAME = "faster_rcnn_resnet101_coco_11_06_2017" # too slow
- #MODEL_NAME = "ssd_resnet101_v1_fpn_shared_box_predictor_oid_512x512_sync_2019_01_20"
- MODEL_FILE = MODEL_NAME + '.tar.gz'
- DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
-
- # Path to frozen detection graph. This is the actual model that is used for the object detection.
- PATH_TO_FROZEN_GRAPH = MODEL_NAME + '/frozen_inference_graph.pb'
-
- # List of the strings that is used to add correct label for each box.
- PATH_TO_LABELS = os.path.join('object_detection/data', 'mscoco_label_map.pbtxt')
-
-
- category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
-
- if sys.platform == "win32":
- detection_graph = tf.Graph()
- with detection_graph.as_default():
- od_graph_def = tf.GraphDef()
- with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:
- serialized_graph = fid.read()
- od_graph_def.ParseFromString(serialized_graph)
- tf.import_graph_def(od_graph_def, name='')
-
-
- def load_image_into_numpy_array(image):
- (im_width, im_height) = image.size
- return np.array(image.getdata()).reshape(
- (im_height, im_width, 3)).astype(np.uint8)
-
- # For the sake of simplicity we will use only 2 images:
- # image1.jpg
- # image2.jpg
- # If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
- PATH_TO_TEST_IMAGES_DIR = 'object_detection/test_images'
- TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(3, 6) ]
-
- # Size, in inches, of the output images.
- sess = 0
-
- data = {"gpu_temp":"10C","gpu_load":"15%","cpu_temp":"47C","cpu_load":"15%","mem_temp":"NaN","mem_load":"17%","fan_speed":"10000RPM"}
-
- def get_temps():
- global data
- if not sys.platform == "win32":
- temps = psutil.sensors_temperatures()
- data["cpu_temp"] = str(int(temps["dell_smm"][0][1]))+"°C"
- data["cpu_load"] = str(psutil.cpu_percent())+"%"
- data["mem_load"] = str(dict(psutil.virtual_memory()._asdict())["percent"])+"%"
- data["fan_speed"] = str(psutil.sensors_fans()["dell_smm"][0][1])+"RPM"
-
-
- def run_inference_for_single_image(image, graph):
- global switch
- global sess
- with graph.as_default():
- if(switch):
- sess = tf.Session()
- switch = 0
- # Get handles to input and output tensors
- ops = tf.get_default_graph().get_operations()
- all_tensor_names = {output.name for op in ops for output in op.outputs}
- tensor_dict = {}
- for key in [
- 'num_detections', 'detection_boxes', 'detection_scores',
- 'detection_classes', 'detection_masks'
- ]:
- tensor_name = key + ':0'
- if tensor_name in all_tensor_names:
- tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
- tensor_name)
- if 'detection_masks' in tensor_dict:
- # The following processing is only for single image
- detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
- detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
- # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
- real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
- detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
- detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
- detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
- detection_masks, detection_boxes, image.shape[1], image.shape[2])
- detection_masks_reframed = tf.cast(
- tf.greater(detection_masks_reframed, 0.5), tf.uint8)
- # Follow the convention by adding back the batch dimension
- tensor_dict['detection_masks'] = tf.expand_dims(
- detection_masks_reframed, 0)
- image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
- # Run inference
- output_dict = sess.run(tensor_dict,
- feed_dict={image_tensor: image})
- # all outputs are float32 numpy arrays, so convert types as appropriate
- output_dict['num_detections'] = int(output_dict['num_detections'][0])
- output_dict['detection_classes'] = output_dict[
- 'detection_classes'][0].astype(np.int64)
- output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
- output_dict['detection_scores'] = output_dict['detection_scores'][0]
- if 'detection_masks' in output_dict:
- output_dict['detection_masks'] = output_dict['detection_masks'][0]
-
- return output_dict
-
- kill = True
-
- def listener(port=8385):
- serversocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
- serversocket.bind((socket.gethostname(), port))
- serversocket.listen(5)
- while kill:
- serversocket.accept()
-
- print('Bye!')
-
- cut = [115, 100, 400, 150]
- cut_send = [0, 0, 0, 0]
- img_counter = 0
- socket_switch = True
-
- thread = threading.Thread(target=listener)
- thread.start()
-
- if sys.platform == "win32":
- with detection_graph.as_default():
- sess = tf.Session()
- cam = cv2.VideoCapture(0)
- else:
- cam = cv2.VideoCapture('debug_data/amb_1.mp4')
- with open("debug_data/frame_data.pkl","rb") as pkl_file:
- frame_data = pickle.load(pkl_file)
-
- switch = 0
- get_temps()
- amb_center = {'x': (400 + 550)/2, 'y': (115+215)/2}
-
- reps = -1
- reps_vid = 0
-
- while 1:
- ret,image = cam.read()
- reps_vid += 1
- if not sys.platform == "win32" and not reps_vid % 2 == 0:
- continue
- reps += 1
- try: # Kavşak
- t1 = time.time()
- image_np = image
- image_np_expanded = np.expand_dims(image_np, axis=0)
- if sys.platform == "win32":
- output_dict = run_inference_for_single_image(image_np_expanded, detection_graph)
- else:
- output_dict = frame_data[reps]
-
- height, width, channels = image_np.shape
-
- out_dict = {'detection_boxes': [], 'detection_classes': [], 'detection_scores': []}
- for i in output_dict['detection_classes']:
- cont = False
- if i in [3, 6, 8]: # Car, bus, truck
- index = np.where(output_dict['detection_classes'] == i)[0][0]
- score = output_dict['detection_scores'][index]
- if score > 0.3:
- if not any((output_dict['detection_boxes'][index] == b).all() for b in out_dict['detection_boxes']):
- avg_x = (output_dict['detection_boxes'][index][0] + output_dict['detection_boxes'][index][2])/2
- avg_y = (output_dict['detection_boxes'][index][1] + output_dict['detection_boxes'][index][3])/2
- for box in out_dict['detection_boxes']:
- avg_box_x = (box[0] + box[2])/2
- avg_box_y = (box[1] + box[3])/2
- if abs(avg_x-avg_box_x) < 0.1 and abs(avg_y-avg_box_y) < 0.1:
- cont = True
- continue
-
- out_dict['detection_classes'].append(i)
- out_dict['detection_boxes'].append(output_dict['detection_boxes'][index])
- out_dict['detection_scores'].append(output_dict['detection_scores'][index])
-
- out_dict['detection_classes'] = np.array(out_dict['detection_classes'])
- out_dict['detection_boxes'] = np.array(out_dict['detection_boxes'])
- out_dict['detection_scores'] = np.array(out_dict['detection_scores'])
-
- print(len(out_dict['detection_classes']), ' cars.')
-
- vis_util.visualize_boxes_and_labels_on_image_array(
- image_np,
- out_dict['detection_boxes'],
- out_dict['detection_classes'],
- out_dict['detection_scores'],
- category_index,
- instance_masks=out_dict.get('detection_masks'),
- use_normalized_coordinates=True,
- line_thickness=8,
- min_score_thresh=0.3
- )
- cv2.imshow('frame', image_np)
- ex_c = [27, ord("q"), ord("Q")]
- if cv2.waitKey(1) & 0xFF in ex_c:
- break
-
- t2 = time.time()
- print("time taken for {}".format(t2-t1))
- if not sys.platform == "win32":
- time.sleep(0.1-(t2-t1))
- send_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
- if socket_switch:
- try:
- client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
- client_socket.settimeout(0.1)
- client_socket.connect(('127.0.0.1', 8485))
- connection = client_socket.makefile('wb')
- socket_switch = False
- except:
- socket_switch = True
- continue
- try:
- crop_img = send_image.copy(order='C')
- crop_img = Image.fromarray(crop_img, "RGB")
- buffered = BytesIO()
- crop_img.save(buffered, format="JPEG")
- img = base64.b64encode(buffered.getvalue()).decode("ascii")
- lens = [len(send_image), 0, len(send_image[0])]
- for i in range(0,len(cut), 2):
- if cut[i] < 0:
- cut_send[i] = lens[i] + cut[i]
- cut_send[i+1] = abs(cut[i])-abs(cut[i+1])
- client_socket.sendall(json.dumps({"image_full":img,"image_sizes":{"x":cut_send[2],"y":cut_send[0],"width":cut_send[3],"height":cut_send[1]},"load":data}).encode('gbk')+b"\n")
- img_counter += 1
- except:
- socket_switch = True
-
- if img_counter % 10 == 0:
- get_temps()
-
- except Exception as e:
- if hasattr(e, 'message'):
- print(e.message)
- else:
- print(e)
- break
-
-
-
- if not socket_switch:
- client_socket.sendall(b"Bye\n")
- cam.release()
-
-
- cv2.destroyAllWindows()
- cam.release()
- kill = False
- thread.join()
|