- from flask import Flask, request
- from flask_restful import Resource, Api, abort
-
- import json
- import io
- import base64
- from PIL import Image
- import sys
- import datetime
- import cv2
-
- if sys.platform == "win32":
- import tensorflow as tf
- import numpy as np
- import pickle
-
- sys.path.insert(0, r'C:\Users\Tednokent01\Downloads\MyCity\traffic_analyzer')
- from utils import label_map_util
-
- from utils import visualization_utils as vis_util
-
- app = Flask(__name__)
- api = Api(app)
-
- score_dict = {
- 1: 1,
- 2: 1,
- 3: 1,
- 4: 1,
- 5: 1,
- 6: 1,
- 7: 1,
- 8: 1
- }
-
- with open("modules/databases/complaints.json","r") as f:
- complaints = json.load(f)
-
- if sys.platform == "win32":
- # Path to frozen detection graph. This is the actual model that is used for the object detection.
- PATH_TO_CKPT = 'modules/trainedModels/ssd_mobilenet_RoadDamageDetector.pb'
-
- # List of the strings that is used to add correct label for each box.
- PATH_TO_LABELS = 'modules/trainedModels/crack_label_map.pbtxt'
-
- NUM_CLASSES = 8
-
- detection_graph = tf.Graph()
- with detection_graph.as_default():
- od_graph_def = tf.GraphDef()
- with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
- serialized_graph = fid.read()
- od_graph_def.ParseFromString(serialized_graph)
- tf.import_graph_def(od_graph_def, name='')
-
- label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
- categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
- category_index = label_map_util.create_category_index(categories)
-
- def load_image_into_numpy_array(image):
- (im_width, im_height) = image.size
- return np.array(image.getdata()).reshape(
- (im_height, im_width, 3)).astype(np.uint8)
-
- def process_img(img_base64):
-
- if sys.platform == "win32":
- img = Image.open(io.BytesIO(base64.b64decode(img_base64)))
- with detection_graph.as_default():
- with tf.Session(graph=detection_graph) as sess:
- # Definite input and output Tensors for detection_graph
- image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
- # Each box represents a part of the image where a particular object was detected.
- detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
- # Each score represent how level of confidence for each of the objects.
- # Score is shown on the result image, together with the class label.
- detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
- detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
- num_detections = detection_graph.get_tensor_by_name('num_detections:0')
- # the array based representation of the image will be used later in order to prepare the
- # result image with boxes and labels on it.
- image_np = load_image_into_numpy_array(img)
- # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
- image_np_expanded = np.expand_dims(image_np, axis=0)
- # Actual detection.
- (boxes, scores, classes, num) = sess.run(
- [detection_boxes, detection_scores, detection_classes, num_detections],
- feed_dict={image_tensor: image_np_expanded})
- # Visualization of the results of a detection.
- vis_util.visualize_boxes_and_labels_on_image_array(
- image_np,
- np.squeeze(boxes),
- np.squeeze(classes).astype(np.int32),
- np.squeeze(scores),
- category_index,
- min_score_thresh=0.3,
- use_normalized_coordinates=True,
- line_thickness=8)
-
- output_dict = {'detection_classes': np.squeeze(classes).astype(np.int32), 'detection_scores': np.squeeze(scores)}
- defects = []
- for index, i in enumerate(output_dict['detection_classes']):
- score = output_dict['detection_scores'][index]
- if score > 0.3:
- defects.append(i)
-
- priority = 0
- for i in defects:
- priority += score_dict[i]
-
- if priority > 10:
- priority = 10
-
- _, buffer = cv2.imencode('.jpg', image_np)
- return base64.b64encode(buffer).decode('ascii'),priority,defects
-
- return img_base64, 7,["unprocessed"]
-
- class Complaint(Resource):
- def post(self):
- args = request.form.to_dict()
-
- complaint = args
-
- complaint["response"] = {"status":False}
-
- img_process,priority,tags = process_img(complaint["img"])
-
- complaint["img"] = img_process
- complaint["response"]["priority"] = str(priority)
- complaint["tags"] = list(map(str, tags))
- complaint["datetime"] = datetime.datetime.now().strftime('%b-%d-%I:%M %p-%G')
-
- try:
- complaints[complaint["id"]].append(complaint)
- except KeyError:
- complaints[complaint["id"]] = [complaint]
-
- del complaints[complaint["id"]][-1]["id"]
- with open('modules/databases/complaints.json', 'w') as complaints_file:
- json.dump(complaints, complaints_file, indent=4)
-
-
- class Complaints(Resource):
- def post(self):
- id = request.form["id"]
- return complaints[id]
-
-
- class ComplaintsUpdate(Resource):
- def get(self):
- args = request.args
- complaints[args.get("id")][int(args.get("index"))]["response"]["message"] = args.get("message")
- complaints[args["id"]][int(args["index"])]["response"]["status"] = True
- with open('modules/databases/complaints.json', 'w') as complaints_file:
- json.dump(complaints, complaints_file, indent=4)
- return
-
|