syntax = "proto2"; package object_detection.protos; // Message for configuring DetectionModel evaluation jobs (eval.py). message EvalConfig { optional uint32 batch_size = 25 [default=1]; // Number of visualization images to generate. optional uint32 num_visualizations = 1 [default=10]; // Number of examples to process of evaluation. optional uint32 num_examples = 2 [default=5000, deprecated=true]; // How often to run evaluation. optional uint32 eval_interval_secs = 3 [default=300]; // Maximum number of times to run evaluation. If set to 0, will run forever. optional uint32 max_evals = 4 [default=0, deprecated=true]; // Whether the TensorFlow graph used for evaluation should be saved to disk. optional bool save_graph = 5 [default=false]; // Path to directory to store visualizations in. If empty, visualization // images are not exported (only shown on Tensorboard). optional string visualization_export_dir = 6 [default=""]; // BNS name of the TensorFlow master. optional string eval_master = 7 [default=""]; // Type of metrics to use for evaluation. repeated string metrics_set = 8; // Path to export detections to COCO compatible JSON format. optional string export_path = 9 [default='']; // Option to not read groundtruth labels and only export detections to // COCO-compatible JSON file. optional bool ignore_groundtruth = 10 [default=false]; // Use exponential moving averages of variables for evaluation. // TODO(rathodv): When this is false make sure the model is constructed // without moving averages in restore_fn. optional bool use_moving_averages = 11 [default=false]; // Whether to evaluate instance masks. // Note that since there is no evaluation code currently for instance // segmenation this option is unused. optional bool eval_instance_masks = 12 [default=false]; // Minimum score threshold for a detected object box to be visualized optional float min_score_threshold = 13 [default=0.5]; // Maximum number of detections to visualize optional int32 max_num_boxes_to_visualize = 14 [default=20]; // When drawing a single detection, each label is by default visualized as //