syntax = "proto2"; package object_detection.protos; import "object_detection/protos/optimizer.proto"; import "object_detection/protos/preprocessor.proto"; // Message for configuring DetectionModel training jobs (train.py). // Next id: 28 message TrainConfig { // Effective batch size to use for training. // For TPU (or sync SGD jobs), the batch size per core (or GPU) is going to be // `batch_size` / number of cores (or `batch_size` / number of GPUs). optional uint32 batch_size = 1 [default=32]; // Data augmentation options. repeated PreprocessingStep data_augmentation_options = 2; // Whether to synchronize replicas during training. optional bool sync_replicas = 3 [default=false]; // How frequently to keep checkpoints. optional float keep_checkpoint_every_n_hours = 4 [default=10000.0]; // Optimizer used to train the DetectionModel. optional Optimizer optimizer = 5; // If greater than 0, clips gradients by this value. optional float gradient_clipping_by_norm = 6 [default=0.0]; // Checkpoint to restore variables from. Typically used to load feature // extractor variables trained outside of object detection. optional string fine_tune_checkpoint = 7 [default=""]; // Type of checkpoint to restore variables from, e.g. 'classification' or // 'detection'. Provides extensibility to from_detection_checkpoint. // Typically used to load feature extractor variables from trained models. optional string fine_tune_checkpoint_type = 22 [default=""]; // [Deprecated]: use fine_tune_checkpoint_type instead. // Specifies if the finetune checkpoint is from an object detection model. // If from an object detection model, the model being trained should have // the same parameters with the exception of the num_classes parameter. // If false, it assumes the checkpoint was a object classification model. optional bool from_detection_checkpoint = 8 [default=false, deprecated=true]; // Whether to load all checkpoint vars that match model variable names and // sizes. This option is only available if `from_detection_checkpoint` is // True. optional bool load_all_detection_checkpoint_vars = 19 [default = false]; // Number of steps to train the DetectionModel for. If 0, will train the model // indefinitely. optional uint32 num_steps = 9 [default=0]; // Number of training steps between replica startup. // This flag must be set to 0 if sync_replicas is set to true. optional float startup_delay_steps = 10 [default=15]; // If greater than 0, multiplies the gradient of bias variables by this // amount. optional float bias_grad_multiplier = 11 [default=0]; // Variables that should be updated during training. Note that variables which // also match the patterns in freeze_variables will be excluded. repeated string update_trainable_variables = 25; // Variables that should not be updated during training. If // update_trainable_variables is not empty, only eliminates the included // variables according to freeze_variables patterns. repeated string freeze_variables = 12; // Number of replicas to aggregate before making parameter updates. optional int32 replicas_to_aggregate = 13 [default=1]; // Maximum number of elements to store within a queue. optional int32 batch_queue_capacity = 14 [default=150, deprecated=true]; // Number of threads to use for batching. optional int32 num_batch_queue_threads = 15 [default=8, deprecated=true]; // Maximum capacity of the queue used to prefetch assembled batches. optional int32 prefetch_queue_capacity = 16 [default=5, deprecated=true]; // If true, boxes with the same coordinates will be merged together. // This is useful when each box can have multiple labels. // Note that only Sigmoid classification losses should be used. optional bool merge_multiple_label_boxes = 17 [default=false]; // If true, will use multiclass scores from object annotations as ground // truth. Currently only compatible with annotated image inputs. optional bool use_multiclass_scores = 24 [default = false]; // Whether to add regularization loss to `total_loss`. This is true by // default and adds all regularization losses defined in the model to // `total_loss`. // Setting this option to false is very useful while debugging the model and // losses. optional bool add_regularization_loss = 18 [default=true]; // Maximum number of boxes used during training. // Set this to at least the maximum amount of boxes in the input data. // Otherwise, it may cause "Data loss: Attempted to pad to a smaller size // than the input element" errors. optional int32 max_number_of_boxes = 20 [default=100, deprecated=true]; // Whether to remove padding along `num_boxes` dimension of the groundtruth // tensors. optional bool unpad_groundtruth_tensors = 21 [default=true]; // Whether to retain original images (i.e. not pre-processed) in the tensor // dictionary, so that they can be displayed in Tensorboard. Note that this // will lead to a larger memory footprint. optional bool retain_original_images = 23 [default=false]; // Whether to use bfloat16 for training. This is currently only supported for // TPUs. optional bool use_bfloat16 = 26 [default=false]; // Whether to summarize gradients. optional bool summarize_gradients = 27 [default=false]; }