# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A function to build a DetectionModel from configuration.""" import functools from object_detection.builders import anchor_generator_builder from object_detection.builders import box_coder_builder from object_detection.builders import box_predictor_builder from object_detection.builders import hyperparams_builder from object_detection.builders import image_resizer_builder from object_detection.builders import losses_builder from object_detection.builders import matcher_builder from object_detection.builders import post_processing_builder from object_detection.builders import region_similarity_calculator_builder as sim_calc from object_detection.core import balanced_positive_negative_sampler as sampler from object_detection.core import post_processing from object_detection.core import target_assigner from object_detection.meta_architectures import faster_rcnn_meta_arch from object_detection.meta_architectures import rfcn_meta_arch from object_detection.meta_architectures import ssd_meta_arch from object_detection.models import faster_rcnn_inception_resnet_v2_feature_extractor as frcnn_inc_res from object_detection.models import faster_rcnn_inception_resnet_v2_keras_feature_extractor as frcnn_inc_res_keras from object_detection.models import faster_rcnn_inception_v2_feature_extractor as frcnn_inc_v2 from object_detection.models import faster_rcnn_nas_feature_extractor as frcnn_nas from object_detection.models import faster_rcnn_pnas_feature_extractor as frcnn_pnas from object_detection.models import faster_rcnn_resnet_v1_feature_extractor as frcnn_resnet_v1 from object_detection.models import ssd_resnet_v1_fpn_feature_extractor as ssd_resnet_v1_fpn from object_detection.models import ssd_resnet_v1_ppn_feature_extractor as ssd_resnet_v1_ppn from object_detection.models.embedded_ssd_mobilenet_v1_feature_extractor import EmbeddedSSDMobileNetV1FeatureExtractor from object_detection.models.ssd_inception_v2_feature_extractor import SSDInceptionV2FeatureExtractor from object_detection.models.ssd_inception_v3_feature_extractor import SSDInceptionV3FeatureExtractor from object_detection.models.ssd_mobilenet_v1_feature_extractor import SSDMobileNetV1FeatureExtractor from object_detection.models.ssd_mobilenet_v1_fpn_feature_extractor import SSDMobileNetV1FpnFeatureExtractor from object_detection.models.ssd_mobilenet_v1_fpn_keras_feature_extractor import SSDMobileNetV1FpnKerasFeatureExtractor from object_detection.models.ssd_mobilenet_v1_keras_feature_extractor import SSDMobileNetV1KerasFeatureExtractor from object_detection.models.ssd_mobilenet_v1_ppn_feature_extractor import SSDMobileNetV1PpnFeatureExtractor from object_detection.models.ssd_mobilenet_v2_feature_extractor import SSDMobileNetV2FeatureExtractor from object_detection.models.ssd_mobilenet_v2_fpn_feature_extractor import SSDMobileNetV2FpnFeatureExtractor from object_detection.models.ssd_mobilenet_v2_fpn_keras_feature_extractor import SSDMobileNetV2FpnKerasFeatureExtractor from object_detection.models.ssd_mobilenet_v2_keras_feature_extractor import SSDMobileNetV2KerasFeatureExtractor from object_detection.models.ssd_pnasnet_feature_extractor import SSDPNASNetFeatureExtractor from object_detection.predictors import rfcn_box_predictor from object_detection.predictors import rfcn_keras_box_predictor from object_detection.predictors.heads import mask_head from object_detection.protos import model_pb2 from object_detection.utils import ops # A map of names to SSD feature extractors. SSD_FEATURE_EXTRACTOR_CLASS_MAP = { 'ssd_inception_v2': SSDInceptionV2FeatureExtractor, 'ssd_inception_v3': SSDInceptionV3FeatureExtractor, 'ssd_mobilenet_v1': SSDMobileNetV1FeatureExtractor, 'ssd_mobilenet_v1_fpn': SSDMobileNetV1FpnFeatureExtractor, 'ssd_mobilenet_v1_ppn': SSDMobileNetV1PpnFeatureExtractor, 'ssd_mobilenet_v2': SSDMobileNetV2FeatureExtractor, 'ssd_mobilenet_v2_fpn': SSDMobileNetV2FpnFeatureExtractor, 'ssd_resnet50_v1_fpn': ssd_resnet_v1_fpn.SSDResnet50V1FpnFeatureExtractor, 'ssd_resnet101_v1_fpn': ssd_resnet_v1_fpn.SSDResnet101V1FpnFeatureExtractor, 'ssd_resnet152_v1_fpn': ssd_resnet_v1_fpn.SSDResnet152V1FpnFeatureExtractor, 'ssd_resnet50_v1_ppn': ssd_resnet_v1_ppn.SSDResnet50V1PpnFeatureExtractor, 'ssd_resnet101_v1_ppn': ssd_resnet_v1_ppn.SSDResnet101V1PpnFeatureExtractor, 'ssd_resnet152_v1_ppn': ssd_resnet_v1_ppn.SSDResnet152V1PpnFeatureExtractor, 'embedded_ssd_mobilenet_v1': EmbeddedSSDMobileNetV1FeatureExtractor, 'ssd_pnasnet': SSDPNASNetFeatureExtractor, } SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP = { 'ssd_mobilenet_v1_keras': SSDMobileNetV1KerasFeatureExtractor, 'ssd_mobilenet_v1_fpn_keras': SSDMobileNetV1FpnKerasFeatureExtractor, 'ssd_mobilenet_v2_keras': SSDMobileNetV2KerasFeatureExtractor, 'ssd_mobilenet_v2_fpn_keras': SSDMobileNetV2FpnKerasFeatureExtractor, } # A map of names to Faster R-CNN feature extractors. FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP = { 'faster_rcnn_nas': frcnn_nas.FasterRCNNNASFeatureExtractor, 'faster_rcnn_pnas': frcnn_pnas.FasterRCNNPNASFeatureExtractor, 'faster_rcnn_inception_resnet_v2': frcnn_inc_res.FasterRCNNInceptionResnetV2FeatureExtractor, 'faster_rcnn_inception_v2': frcnn_inc_v2.FasterRCNNInceptionV2FeatureExtractor, 'faster_rcnn_resnet50': frcnn_resnet_v1.FasterRCNNResnet50FeatureExtractor, 'faster_rcnn_resnet101': frcnn_resnet_v1.FasterRCNNResnet101FeatureExtractor, 'faster_rcnn_resnet152': frcnn_resnet_v1.FasterRCNNResnet152FeatureExtractor, } FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP = { 'faster_rcnn_inception_resnet_v2_keras': frcnn_inc_res_keras.FasterRCNNInceptionResnetV2KerasFeatureExtractor, } def build(model_config, is_training, add_summaries=True): """Builds a DetectionModel based on the model config. Args: model_config: A model.proto object containing the config for the desired DetectionModel. is_training: True if this model is being built for training purposes. add_summaries: Whether to add tensorflow summaries in the model graph. Returns: DetectionModel based on the config. Raises: ValueError: On invalid meta architecture or model. """ if not isinstance(model_config, model_pb2.DetectionModel): raise ValueError('model_config not of type model_pb2.DetectionModel.') meta_architecture = model_config.WhichOneof('model') if meta_architecture == 'ssd': return _build_ssd_model(model_config.ssd, is_training, add_summaries) if meta_architecture == 'faster_rcnn': return _build_faster_rcnn_model(model_config.faster_rcnn, is_training, add_summaries) raise ValueError('Unknown meta architecture: {}'.format(meta_architecture)) def _build_ssd_feature_extractor(feature_extractor_config, is_training, freeze_batchnorm, reuse_weights=None): """Builds a ssd_meta_arch.SSDFeatureExtractor based on config. Args: feature_extractor_config: A SSDFeatureExtractor proto config from ssd.proto. is_training: True if this feature extractor is being built for training. freeze_batchnorm: Whether to freeze batch norm parameters during training or not. When training with a small batch size (e.g. 1), it is desirable to freeze batch norm update and use pretrained batch norm params. reuse_weights: if the feature extractor should reuse weights. Returns: ssd_meta_arch.SSDFeatureExtractor based on config. Raises: ValueError: On invalid feature extractor type. """ feature_type = feature_extractor_config.type is_keras_extractor = feature_type in SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP depth_multiplier = feature_extractor_config.depth_multiplier min_depth = feature_extractor_config.min_depth pad_to_multiple = feature_extractor_config.pad_to_multiple use_explicit_padding = feature_extractor_config.use_explicit_padding use_depthwise = feature_extractor_config.use_depthwise if is_keras_extractor: conv_hyperparams = hyperparams_builder.KerasLayerHyperparams( feature_extractor_config.conv_hyperparams) else: conv_hyperparams = hyperparams_builder.build( feature_extractor_config.conv_hyperparams, is_training) override_base_feature_extractor_hyperparams = ( feature_extractor_config.override_base_feature_extractor_hyperparams) if (feature_type not in SSD_FEATURE_EXTRACTOR_CLASS_MAP) and ( not is_keras_extractor): raise ValueError('Unknown ssd feature_extractor: {}'.format(feature_type)) if is_keras_extractor: feature_extractor_class = SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP[ feature_type] else: feature_extractor_class = SSD_FEATURE_EXTRACTOR_CLASS_MAP[feature_type] kwargs = { 'is_training': is_training, 'depth_multiplier': depth_multiplier, 'min_depth': min_depth, 'pad_to_multiple': pad_to_multiple, 'use_explicit_padding': use_explicit_padding, 'use_depthwise': use_depthwise, 'override_base_feature_extractor_hyperparams': override_base_feature_extractor_hyperparams } if feature_extractor_config.HasField('replace_preprocessor_with_placeholder'): kwargs.update({ 'replace_preprocessor_with_placeholder': feature_extractor_config.replace_preprocessor_with_placeholder }) if is_keras_extractor: kwargs.update({ 'conv_hyperparams': conv_hyperparams, 'inplace_batchnorm_update': False, 'freeze_batchnorm': freeze_batchnorm }) else: kwargs.update({ 'conv_hyperparams_fn': conv_hyperparams, 'reuse_weights': reuse_weights, }) if feature_extractor_config.HasField('fpn'): kwargs.update({ 'fpn_min_level': feature_extractor_config.fpn.min_level, 'fpn_max_level': feature_extractor_config.fpn.max_level, 'additional_layer_depth': feature_extractor_config.fpn.additional_layer_depth, }) return feature_extractor_class(**kwargs) def _build_ssd_model(ssd_config, is_training, add_summaries): """Builds an SSD detection model based on the model config. Args: ssd_config: A ssd.proto object containing the config for the desired SSDMetaArch. is_training: True if this model is being built for training purposes. add_summaries: Whether to add tf summaries in the model. Returns: SSDMetaArch based on the config. Raises: ValueError: If ssd_config.type is not recognized (i.e. not registered in model_class_map). """ num_classes = ssd_config.num_classes # Feature extractor feature_extractor = _build_ssd_feature_extractor( feature_extractor_config=ssd_config.feature_extractor, freeze_batchnorm=ssd_config.freeze_batchnorm, is_training=is_training) box_coder = box_coder_builder.build(ssd_config.box_coder) matcher = matcher_builder.build(ssd_config.matcher) region_similarity_calculator = sim_calc.build( ssd_config.similarity_calculator) encode_background_as_zeros = ssd_config.encode_background_as_zeros negative_class_weight = ssd_config.negative_class_weight anchor_generator = anchor_generator_builder.build( ssd_config.anchor_generator) if feature_extractor.is_keras_model: ssd_box_predictor = box_predictor_builder.build_keras( hyperparams_fn=hyperparams_builder.KerasLayerHyperparams, freeze_batchnorm=ssd_config.freeze_batchnorm, inplace_batchnorm_update=False, num_predictions_per_location_list=anchor_generator .num_anchors_per_location(), box_predictor_config=ssd_config.box_predictor, is_training=is_training, num_classes=num_classes, add_background_class=ssd_config.add_background_class) else: ssd_box_predictor = box_predictor_builder.build( hyperparams_builder.build, ssd_config.box_predictor, is_training, num_classes, ssd_config.add_background_class) image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer) non_max_suppression_fn, score_conversion_fn = post_processing_builder.build( ssd_config.post_processing) (classification_loss, localization_loss, classification_weight, localization_weight, hard_example_miner, random_example_sampler, expected_loss_weights_fn) = losses_builder.build(ssd_config.loss) normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches normalize_loc_loss_by_codesize = ssd_config.normalize_loc_loss_by_codesize equalization_loss_config = ops.EqualizationLossConfig( weight=ssd_config.loss.equalization_loss.weight, exclude_prefixes=ssd_config.loss.equalization_loss.exclude_prefixes) target_assigner_instance = target_assigner.TargetAssigner( region_similarity_calculator, matcher, box_coder, negative_class_weight=negative_class_weight) ssd_meta_arch_fn = ssd_meta_arch.SSDMetaArch kwargs = {} return ssd_meta_arch_fn( is_training=is_training, anchor_generator=anchor_generator, box_predictor=ssd_box_predictor, box_coder=box_coder, feature_extractor=feature_extractor, encode_background_as_zeros=encode_background_as_zeros, image_resizer_fn=image_resizer_fn, non_max_suppression_fn=non_max_suppression_fn, score_conversion_fn=score_conversion_fn, classification_loss=classification_loss, localization_loss=localization_loss, classification_loss_weight=classification_weight, localization_loss_weight=localization_weight, normalize_loss_by_num_matches=normalize_loss_by_num_matches, hard_example_miner=hard_example_miner, target_assigner_instance=target_assigner_instance, add_summaries=add_summaries, normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize, freeze_batchnorm=ssd_config.freeze_batchnorm, inplace_batchnorm_update=ssd_config.inplace_batchnorm_update, add_background_class=ssd_config.add_background_class, explicit_background_class=ssd_config.explicit_background_class, random_example_sampler=random_example_sampler, expected_loss_weights_fn=expected_loss_weights_fn, use_confidences_as_targets=ssd_config.use_confidences_as_targets, implicit_example_weight=ssd_config.implicit_example_weight, equalization_loss_config=equalization_loss_config, **kwargs) def _build_faster_rcnn_feature_extractor( feature_extractor_config, is_training, reuse_weights=None, inplace_batchnorm_update=False): """Builds a faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config. Args: feature_extractor_config: A FasterRcnnFeatureExtractor proto config from faster_rcnn.proto. is_training: True if this feature extractor is being built for training. reuse_weights: if the feature extractor should reuse weights. inplace_batchnorm_update: Whether to update batch_norm inplace during training. This is required for batch norm to work correctly on TPUs. When this is false, user must add a control dependency on tf.GraphKeys.UPDATE_OPS for train/loss op in order to update the batch norm moving average parameters. Returns: faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config. Raises: ValueError: On invalid feature extractor type. """ if inplace_batchnorm_update: raise ValueError('inplace batchnorm updates not supported.') feature_type = feature_extractor_config.type first_stage_features_stride = ( feature_extractor_config.first_stage_features_stride) batch_norm_trainable = feature_extractor_config.batch_norm_trainable if feature_type not in FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP: raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format( feature_type)) feature_extractor_class = FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP[ feature_type] return feature_extractor_class( is_training, first_stage_features_stride, batch_norm_trainable, reuse_weights=reuse_weights) def _build_faster_rcnn_keras_feature_extractor( feature_extractor_config, is_training, inplace_batchnorm_update=False): """Builds a faster_rcnn_meta_arch.FasterRCNNKerasFeatureExtractor from config. Args: feature_extractor_config: A FasterRcnnFeatureExtractor proto config from faster_rcnn.proto. is_training: True if this feature extractor is being built for training. inplace_batchnorm_update: Whether to update batch_norm inplace during training. This is required for batch norm to work correctly on TPUs. When this is false, user must add a control dependency on tf.GraphKeys.UPDATE_OPS for train/loss op in order to update the batch norm moving average parameters. Returns: faster_rcnn_meta_arch.FasterRCNNKerasFeatureExtractor based on config. Raises: ValueError: On invalid feature extractor type. """ if inplace_batchnorm_update: raise ValueError('inplace batchnorm updates not supported.') feature_type = feature_extractor_config.type first_stage_features_stride = ( feature_extractor_config.first_stage_features_stride) batch_norm_trainable = feature_extractor_config.batch_norm_trainable if feature_type not in FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP: raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format( feature_type)) feature_extractor_class = FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP[ feature_type] return feature_extractor_class( is_training, first_stage_features_stride, batch_norm_trainable) def _build_faster_rcnn_model(frcnn_config, is_training, add_summaries): """Builds a Faster R-CNN or R-FCN detection model based on the model config. Builds R-FCN model if the second_stage_box_predictor in the config is of type `rfcn_box_predictor` else builds a Faster R-CNN model. Args: frcnn_config: A faster_rcnn.proto object containing the config for the desired FasterRCNNMetaArch or RFCNMetaArch. is_training: True if this model is being built for training purposes. add_summaries: Whether to add tf summaries in the model. Returns: FasterRCNNMetaArch based on the config. Raises: ValueError: If frcnn_config.type is not recognized (i.e. not registered in model_class_map). """ num_classes = frcnn_config.num_classes image_resizer_fn = image_resizer_builder.build(frcnn_config.image_resizer) is_keras = (frcnn_config.feature_extractor.type in FASTER_RCNN_KERAS_FEATURE_EXTRACTOR_CLASS_MAP) if is_keras: feature_extractor = _build_faster_rcnn_keras_feature_extractor( frcnn_config.feature_extractor, is_training, inplace_batchnorm_update=frcnn_config.inplace_batchnorm_update) else: feature_extractor = _build_faster_rcnn_feature_extractor( frcnn_config.feature_extractor, is_training, inplace_batchnorm_update=frcnn_config.inplace_batchnorm_update) number_of_stages = frcnn_config.number_of_stages first_stage_anchor_generator = anchor_generator_builder.build( frcnn_config.first_stage_anchor_generator) first_stage_target_assigner = target_assigner.create_target_assigner( 'FasterRCNN', 'proposal', use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher) first_stage_atrous_rate = frcnn_config.first_stage_atrous_rate if is_keras: first_stage_box_predictor_arg_scope_fn = ( hyperparams_builder.KerasLayerHyperparams( frcnn_config.first_stage_box_predictor_conv_hyperparams)) else: first_stage_box_predictor_arg_scope_fn = hyperparams_builder.build( frcnn_config.first_stage_box_predictor_conv_hyperparams, is_training) first_stage_box_predictor_kernel_size = ( frcnn_config.first_stage_box_predictor_kernel_size) first_stage_box_predictor_depth = frcnn_config.first_stage_box_predictor_depth first_stage_minibatch_size = frcnn_config.first_stage_minibatch_size use_static_shapes = frcnn_config.use_static_shapes and ( frcnn_config.use_static_shapes_for_eval or is_training) first_stage_sampler = sampler.BalancedPositiveNegativeSampler( positive_fraction=frcnn_config.first_stage_positive_balance_fraction, is_static=(frcnn_config.use_static_balanced_label_sampler and use_static_shapes)) first_stage_max_proposals = frcnn_config.first_stage_max_proposals if (frcnn_config.first_stage_nms_iou_threshold < 0 or frcnn_config.first_stage_nms_iou_threshold > 1.0): raise ValueError('iou_threshold not in [0, 1.0].') if (is_training and frcnn_config.second_stage_batch_size > first_stage_max_proposals): raise ValueError('second_stage_batch_size should be no greater than ' 'first_stage_max_proposals.') first_stage_non_max_suppression_fn = functools.partial( post_processing.batch_multiclass_non_max_suppression, score_thresh=frcnn_config.first_stage_nms_score_threshold, iou_thresh=frcnn_config.first_stage_nms_iou_threshold, max_size_per_class=frcnn_config.first_stage_max_proposals, max_total_size=frcnn_config.first_stage_max_proposals, use_static_shapes=use_static_shapes) first_stage_loc_loss_weight = ( frcnn_config.first_stage_localization_loss_weight) first_stage_obj_loss_weight = frcnn_config.first_stage_objectness_loss_weight initial_crop_size = frcnn_config.initial_crop_size maxpool_kernel_size = frcnn_config.maxpool_kernel_size maxpool_stride = frcnn_config.maxpool_stride second_stage_target_assigner = target_assigner.create_target_assigner( 'FasterRCNN', 'detection', use_matmul_gather=frcnn_config.use_matmul_gather_in_matcher) if is_keras: second_stage_box_predictor = box_predictor_builder.build_keras( hyperparams_builder.KerasLayerHyperparams, freeze_batchnorm=False, inplace_batchnorm_update=False, num_predictions_per_location_list=[1], box_predictor_config=frcnn_config.second_stage_box_predictor, is_training=is_training, num_classes=num_classes) else: second_stage_box_predictor = box_predictor_builder.build( hyperparams_builder.build, frcnn_config.second_stage_box_predictor, is_training=is_training, num_classes=num_classes) second_stage_batch_size = frcnn_config.second_stage_batch_size second_stage_sampler = sampler.BalancedPositiveNegativeSampler( positive_fraction=frcnn_config.second_stage_balance_fraction, is_static=(frcnn_config.use_static_balanced_label_sampler and use_static_shapes)) (second_stage_non_max_suppression_fn, second_stage_score_conversion_fn ) = post_processing_builder.build(frcnn_config.second_stage_post_processing) second_stage_localization_loss_weight = ( frcnn_config.second_stage_localization_loss_weight) second_stage_classification_loss = ( losses_builder.build_faster_rcnn_classification_loss( frcnn_config.second_stage_classification_loss)) second_stage_classification_loss_weight = ( frcnn_config.second_stage_classification_loss_weight) second_stage_mask_prediction_loss_weight = ( frcnn_config.second_stage_mask_prediction_loss_weight) hard_example_miner = None if frcnn_config.HasField('hard_example_miner'): hard_example_miner = losses_builder.build_hard_example_miner( frcnn_config.hard_example_miner, second_stage_classification_loss_weight, second_stage_localization_loss_weight) crop_and_resize_fn = ( ops.matmul_crop_and_resize if frcnn_config.use_matmul_crop_and_resize else ops.native_crop_and_resize) clip_anchors_to_image = ( frcnn_config.clip_anchors_to_image) common_kwargs = { 'is_training': is_training, 'num_classes': num_classes, 'image_resizer_fn': image_resizer_fn, 'feature_extractor': feature_extractor, 'number_of_stages': number_of_stages, 'first_stage_anchor_generator': first_stage_anchor_generator, 'first_stage_target_assigner': first_stage_target_assigner, 'first_stage_atrous_rate': first_stage_atrous_rate, 'first_stage_box_predictor_arg_scope_fn': first_stage_box_predictor_arg_scope_fn, 'first_stage_box_predictor_kernel_size': first_stage_box_predictor_kernel_size, 'first_stage_box_predictor_depth': first_stage_box_predictor_depth, 'first_stage_minibatch_size': first_stage_minibatch_size, 'first_stage_sampler': first_stage_sampler, 'first_stage_non_max_suppression_fn': first_stage_non_max_suppression_fn, 'first_stage_max_proposals': first_stage_max_proposals, 'first_stage_localization_loss_weight': first_stage_loc_loss_weight, 'first_stage_objectness_loss_weight': first_stage_obj_loss_weight, 'second_stage_target_assigner': second_stage_target_assigner, 'second_stage_batch_size': second_stage_batch_size, 'second_stage_sampler': second_stage_sampler, 'second_stage_non_max_suppression_fn': second_stage_non_max_suppression_fn, 'second_stage_score_conversion_fn': second_stage_score_conversion_fn, 'second_stage_localization_loss_weight': second_stage_localization_loss_weight, 'second_stage_classification_loss': second_stage_classification_loss, 'second_stage_classification_loss_weight': second_stage_classification_loss_weight, 'hard_example_miner': hard_example_miner, 'add_summaries': add_summaries, 'crop_and_resize_fn': crop_and_resize_fn, 'clip_anchors_to_image': clip_anchors_to_image, 'use_static_shapes': use_static_shapes, 'resize_masks': frcnn_config.resize_masks } if (isinstance(second_stage_box_predictor, rfcn_box_predictor.RfcnBoxPredictor) or isinstance(second_stage_box_predictor, rfcn_keras_box_predictor.RfcnKerasBoxPredictor)): return rfcn_meta_arch.RFCNMetaArch( second_stage_rfcn_box_predictor=second_stage_box_predictor, **common_kwargs) else: return faster_rcnn_meta_arch.FasterRCNNMetaArch( initial_crop_size=initial_crop_size, maxpool_kernel_size=maxpool_kernel_size, maxpool_stride=maxpool_stride, second_stage_mask_rcnn_box_predictor=second_stage_box_predictor, second_stage_mask_prediction_loss_weight=( second_stage_mask_prediction_loss_weight), **common_kwargs)