# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions to build DetectionModel training optimizers.""" import tensorflow as tf from object_detection.utils import learning_schedules def build(optimizer_config, global_step=None): """Create optimizer based on config. Args: optimizer_config: A Optimizer proto message. global_step: A variable representing the current step. If None, defaults to tf.train.get_or_create_global_step() Returns: An optimizer and a list of variables for summary. Raises: ValueError: when using an unsupported input data type. """ optimizer_type = optimizer_config.WhichOneof('optimizer') optimizer = None summary_vars = [] if optimizer_type == 'rms_prop_optimizer': config = optimizer_config.rms_prop_optimizer learning_rate = _create_learning_rate(config.learning_rate, global_step=global_step) summary_vars.append(learning_rate) optimizer = tf.train.RMSPropOptimizer( learning_rate, decay=config.decay, momentum=config.momentum_optimizer_value, epsilon=config.epsilon) if optimizer_type == 'momentum_optimizer': config = optimizer_config.momentum_optimizer learning_rate = _create_learning_rate(config.learning_rate, global_step=global_step) summary_vars.append(learning_rate) optimizer = tf.train.MomentumOptimizer( learning_rate, momentum=config.momentum_optimizer_value) if optimizer_type == 'adam_optimizer': config = optimizer_config.adam_optimizer learning_rate = _create_learning_rate(config.learning_rate, global_step=global_step) summary_vars.append(learning_rate) optimizer = tf.train.AdamOptimizer(learning_rate) if optimizer is None: raise ValueError('Optimizer %s not supported.' % optimizer_type) if optimizer_config.use_moving_average: optimizer = tf.contrib.opt.MovingAverageOptimizer( optimizer, average_decay=optimizer_config.moving_average_decay) return optimizer, summary_vars def _create_learning_rate(learning_rate_config, global_step=None): """Create optimizer learning rate based on config. Args: learning_rate_config: A LearningRate proto message. global_step: A variable representing the current step. If None, defaults to tf.train.get_or_create_global_step() Returns: A learning rate. Raises: ValueError: when using an unsupported input data type. """ if global_step is None: global_step = tf.train.get_or_create_global_step() learning_rate = None learning_rate_type = learning_rate_config.WhichOneof('learning_rate') if learning_rate_type == 'constant_learning_rate': config = learning_rate_config.constant_learning_rate learning_rate = tf.constant(config.learning_rate, dtype=tf.float32, name='learning_rate') if learning_rate_type == 'exponential_decay_learning_rate': config = learning_rate_config.exponential_decay_learning_rate learning_rate = learning_schedules.exponential_decay_with_burnin( global_step, config.initial_learning_rate, config.decay_steps, config.decay_factor, burnin_learning_rate=config.burnin_learning_rate, burnin_steps=config.burnin_steps, min_learning_rate=config.min_learning_rate, staircase=config.staircase) if learning_rate_type == 'manual_step_learning_rate': config = learning_rate_config.manual_step_learning_rate if not config.schedule: raise ValueError('Empty learning rate schedule.') learning_rate_step_boundaries = [x.step for x in config.schedule] learning_rate_sequence = [config.initial_learning_rate] learning_rate_sequence += [x.learning_rate for x in config.schedule] learning_rate = learning_schedules.manual_stepping( global_step, learning_rate_step_boundaries, learning_rate_sequence, config.warmup) if learning_rate_type == 'cosine_decay_learning_rate': config = learning_rate_config.cosine_decay_learning_rate learning_rate = learning_schedules.cosine_decay_with_warmup( global_step, config.learning_rate_base, config.total_steps, config.warmup_learning_rate, config.warmup_steps, config.hold_base_rate_steps) if learning_rate is None: raise ValueError('Learning_rate %s not supported.' % learning_rate_type) return learning_rate