# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Runs evaluation using OpenImages groundtruth and predictions. Uses Open Images Challenge 2018, 2019 metrics Example usage: python models/research/object_detection/metrics/oid_od_challenge_evaluation.py \ --input_annotations_boxes=/path/to/input/annotations-human-bbox.csv \ --input_annotations_labels=/path/to/input/annotations-label.csv \ --input_class_labelmap=/path/to/input/class_labelmap.pbtxt \ --input_predictions=/path/to/input/predictions.csv \ --output_metrics=/path/to/output/metric.csv \ --input_annotations_segm=[/path/to/input/annotations-human-mask.csv] \ If optional flag has_masks is True, Mask column is also expected in CSV. CSVs with bounding box annotations, instance segmentations and image label can be downloaded from the Open Images Challenge website: https://storage.googleapis.com/openimages/web/challenge.html The format of the input csv and the metrics itself are described on the challenge website as well. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import app from absl import flags import pandas as pd from google.protobuf import text_format from object_detection.metrics import io_utils from object_detection.metrics import oid_challenge_evaluation_utils as utils from object_detection.protos import string_int_label_map_pb2 from object_detection.utils import object_detection_evaluation flags.DEFINE_string('input_annotations_boxes', None, 'File with groundtruth boxes annotations.') flags.DEFINE_string('input_annotations_labels', None, 'File with groundtruth labels annotations.') flags.DEFINE_string( 'input_predictions', None, """File with detection predictions; NOTE: no postprocessing is applied in the evaluation script.""" ) flags.DEFINE_string('input_class_labelmap', None, 'Open Images Challenge labelmap.') flags.DEFINE_string('output_metrics', None, 'Output file with csv metrics.') flags.DEFINE_string( 'input_annotations_segm', None, 'File with groundtruth instance segmentation annotations [OPTIONAL].') FLAGS = flags.FLAGS def _load_labelmap(labelmap_path): """Loads labelmap from the labelmap path. Args: labelmap_path: Path to the labelmap. Returns: A dictionary mapping class name to class numerical id A list with dictionaries, one dictionary per category. """ label_map = string_int_label_map_pb2.StringIntLabelMap() with open(labelmap_path, 'r') as fid: label_map_string = fid.read() text_format.Merge(label_map_string, label_map) labelmap_dict = {} categories = [] for item in label_map.item: labelmap_dict[item.name] = item.id categories.append({'id': item.id, 'name': item.name}) return labelmap_dict, categories def main(unused_argv): flags.mark_flag_as_required('input_annotations_boxes') flags.mark_flag_as_required('input_annotations_labels') flags.mark_flag_as_required('input_predictions') flags.mark_flag_as_required('input_class_labelmap') flags.mark_flag_as_required('output_metrics') all_location_annotations = pd.read_csv(FLAGS.input_annotations_boxes) all_label_annotations = pd.read_csv(FLAGS.input_annotations_labels) all_label_annotations.rename( columns={'Confidence': 'ConfidenceImageLabel'}, inplace=True) is_instance_segmentation_eval = False if FLAGS.input_annotations_segm: is_instance_segmentation_eval = True all_segm_annotations = pd.read_csv(FLAGS.input_annotations_segm) # Note: this part is unstable as it requires the float point numbers in both # csvs are exactly the same; # Will be replaced by more stable solution: merge on LabelName and ImageID # and filter down by IoU. all_location_annotations = utils.merge_boxes_and_masks( all_location_annotations, all_segm_annotations) all_annotations = pd.concat([all_location_annotations, all_label_annotations]) class_label_map, categories = _load_labelmap(FLAGS.input_class_labelmap) challenge_evaluator = ( object_detection_evaluation.OpenImagesChallengeEvaluator( categories, evaluate_masks=is_instance_segmentation_eval)) for _, groundtruth in enumerate(all_annotations.groupby('ImageID')): image_id, image_groundtruth = groundtruth groundtruth_dictionary = utils.build_groundtruth_dictionary( image_groundtruth, class_label_map) challenge_evaluator.add_single_ground_truth_image_info( image_id, groundtruth_dictionary) all_predictions = pd.read_csv(FLAGS.input_predictions) for _, prediction_data in enumerate(all_predictions.groupby('ImageID')): image_id, image_predictions = prediction_data prediction_dictionary = utils.build_predictions_dictionary( image_predictions, class_label_map) challenge_evaluator.add_single_detected_image_info(image_id, prediction_dictionary) metrics = challenge_evaluator.evaluate() with open(FLAGS.output_metrics, 'w') as fid: io_utils.write_csv(fid, metrics) if __name__ == '__main__': app.run(main)