# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.utils.config_util.""" import os import tensorflow as tf from google.protobuf import text_format from object_detection.protos import eval_pb2 from object_detection.protos import image_resizer_pb2 from object_detection.protos import input_reader_pb2 from object_detection.protos import model_pb2 from object_detection.protos import pipeline_pb2 from object_detection.protos import train_pb2 from object_detection.utils import config_util def _write_config(config, config_path): """Writes a config object to disk.""" config_text = text_format.MessageToString(config) with tf.gfile.Open(config_path, "wb") as f: f.write(config_text) def _update_optimizer_with_constant_learning_rate(optimizer, learning_rate): """Adds a new constant learning rate.""" constant_lr = optimizer.learning_rate.constant_learning_rate constant_lr.learning_rate = learning_rate def _update_optimizer_with_exponential_decay_learning_rate( optimizer, learning_rate): """Adds a new exponential decay learning rate.""" exponential_lr = optimizer.learning_rate.exponential_decay_learning_rate exponential_lr.initial_learning_rate = learning_rate def _update_optimizer_with_manual_step_learning_rate( optimizer, initial_learning_rate, learning_rate_scaling): """Adds a learning rate schedule.""" manual_lr = optimizer.learning_rate.manual_step_learning_rate manual_lr.initial_learning_rate = initial_learning_rate for i in range(3): schedule = manual_lr.schedule.add() schedule.learning_rate = initial_learning_rate * learning_rate_scaling**i def _update_optimizer_with_cosine_decay_learning_rate( optimizer, learning_rate, warmup_learning_rate): """Adds a new cosine decay learning rate.""" cosine_lr = optimizer.learning_rate.cosine_decay_learning_rate cosine_lr.learning_rate_base = learning_rate cosine_lr.warmup_learning_rate = warmup_learning_rate class ConfigUtilTest(tf.test.TestCase): def _create_and_load_test_configs(self, pipeline_config): pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") _write_config(pipeline_config, pipeline_config_path) return config_util.get_configs_from_pipeline_file(pipeline_config_path) def test_get_configs_from_pipeline_file(self): """Test that proto configs can be read from pipeline config file.""" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 10 pipeline_config.train_config.batch_size = 32 pipeline_config.train_input_reader.label_map_path = "path/to/label_map" pipeline_config.eval_config.num_examples = 20 pipeline_config.eval_input_reader.add().queue_capacity = 100 _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) self.assertProtoEquals(pipeline_config.model, configs["model"]) self.assertProtoEquals(pipeline_config.train_config, configs["train_config"]) self.assertProtoEquals(pipeline_config.train_input_reader, configs["train_input_config"]) self.assertProtoEquals(pipeline_config.eval_config, configs["eval_config"]) self.assertProtoEquals(pipeline_config.eval_input_reader, configs["eval_input_configs"]) def test_create_configs_from_pipeline_proto(self): """Tests creating configs dictionary from pipeline proto.""" pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 10 pipeline_config.train_config.batch_size = 32 pipeline_config.train_input_reader.label_map_path = "path/to/label_map" pipeline_config.eval_config.num_examples = 20 pipeline_config.eval_input_reader.add().queue_capacity = 100 configs = config_util.create_configs_from_pipeline_proto(pipeline_config) self.assertProtoEquals(pipeline_config.model, configs["model"]) self.assertProtoEquals(pipeline_config.train_config, configs["train_config"]) self.assertProtoEquals(pipeline_config.train_input_reader, configs["train_input_config"]) self.assertProtoEquals(pipeline_config.eval_config, configs["eval_config"]) self.assertProtoEquals(pipeline_config.eval_input_reader, configs["eval_input_configs"]) def test_create_pipeline_proto_from_configs(self): """Tests that proto can be reconstructed from configs dictionary.""" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 10 pipeline_config.train_config.batch_size = 32 pipeline_config.train_input_reader.label_map_path = "path/to/label_map" pipeline_config.eval_config.num_examples = 20 pipeline_config.eval_input_reader.add().queue_capacity = 100 _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) pipeline_config_reconstructed = ( config_util.create_pipeline_proto_from_configs(configs)) self.assertEqual(pipeline_config, pipeline_config_reconstructed) def test_save_pipeline_config(self): """Tests that the pipeline config is properly saved to disk.""" pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 10 pipeline_config.train_config.batch_size = 32 pipeline_config.train_input_reader.label_map_path = "path/to/label_map" pipeline_config.eval_config.num_examples = 20 pipeline_config.eval_input_reader.add().queue_capacity = 100 config_util.save_pipeline_config(pipeline_config, self.get_temp_dir()) configs = config_util.get_configs_from_pipeline_file( os.path.join(self.get_temp_dir(), "pipeline.config")) pipeline_config_reconstructed = ( config_util.create_pipeline_proto_from_configs(configs)) self.assertEqual(pipeline_config, pipeline_config_reconstructed) def test_get_configs_from_multiple_files(self): """Tests that proto configs can be read from multiple files.""" temp_dir = self.get_temp_dir() # Write model config file. model_config_path = os.path.join(temp_dir, "model.config") model = model_pb2.DetectionModel() model.faster_rcnn.num_classes = 10 _write_config(model, model_config_path) # Write train config file. train_config_path = os.path.join(temp_dir, "train.config") train_config = train_config = train_pb2.TrainConfig() train_config.batch_size = 32 _write_config(train_config, train_config_path) # Write train input config file. train_input_config_path = os.path.join(temp_dir, "train_input.config") train_input_config = input_reader_pb2.InputReader() train_input_config.label_map_path = "path/to/label_map" _write_config(train_input_config, train_input_config_path) # Write eval config file. eval_config_path = os.path.join(temp_dir, "eval.config") eval_config = eval_pb2.EvalConfig() eval_config.num_examples = 20 _write_config(eval_config, eval_config_path) # Write eval input config file. eval_input_config_path = os.path.join(temp_dir, "eval_input.config") eval_input_config = input_reader_pb2.InputReader() eval_input_config.label_map_path = "path/to/another/label_map" _write_config(eval_input_config, eval_input_config_path) configs = config_util.get_configs_from_multiple_files( model_config_path=model_config_path, train_config_path=train_config_path, train_input_config_path=train_input_config_path, eval_config_path=eval_config_path, eval_input_config_path=eval_input_config_path) self.assertProtoEquals(model, configs["model"]) self.assertProtoEquals(train_config, configs["train_config"]) self.assertProtoEquals(train_input_config, configs["train_input_config"]) self.assertProtoEquals(eval_config, configs["eval_config"]) self.assertProtoEquals(eval_input_config, configs["eval_input_configs"][0]) def _assertOptimizerWithNewLearningRate(self, optimizer_name): """Asserts successful updating of all learning rate schemes.""" original_learning_rate = 0.7 learning_rate_scaling = 0.1 warmup_learning_rate = 0.07 hparams = tf.contrib.training.HParams(learning_rate=0.15) pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") # Constant learning rate. pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() optimizer = getattr(pipeline_config.train_config.optimizer, optimizer_name) _update_optimizer_with_constant_learning_rate(optimizer, original_learning_rate) _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) configs = config_util.merge_external_params_with_configs(configs, hparams) optimizer = getattr(configs["train_config"].optimizer, optimizer_name) constant_lr = optimizer.learning_rate.constant_learning_rate self.assertAlmostEqual(hparams.learning_rate, constant_lr.learning_rate) # Exponential decay learning rate. pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() optimizer = getattr(pipeline_config.train_config.optimizer, optimizer_name) _update_optimizer_with_exponential_decay_learning_rate( optimizer, original_learning_rate) _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) configs = config_util.merge_external_params_with_configs(configs, hparams) optimizer = getattr(configs["train_config"].optimizer, optimizer_name) exponential_lr = optimizer.learning_rate.exponential_decay_learning_rate self.assertAlmostEqual(hparams.learning_rate, exponential_lr.initial_learning_rate) # Manual step learning rate. pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() optimizer = getattr(pipeline_config.train_config.optimizer, optimizer_name) _update_optimizer_with_manual_step_learning_rate( optimizer, original_learning_rate, learning_rate_scaling) _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) configs = config_util.merge_external_params_with_configs(configs, hparams) optimizer = getattr(configs["train_config"].optimizer, optimizer_name) manual_lr = optimizer.learning_rate.manual_step_learning_rate self.assertAlmostEqual(hparams.learning_rate, manual_lr.initial_learning_rate) for i, schedule in enumerate(manual_lr.schedule): self.assertAlmostEqual(hparams.learning_rate * learning_rate_scaling**i, schedule.learning_rate) # Cosine decay learning rate. pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() optimizer = getattr(pipeline_config.train_config.optimizer, optimizer_name) _update_optimizer_with_cosine_decay_learning_rate(optimizer, original_learning_rate, warmup_learning_rate) _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) configs = config_util.merge_external_params_with_configs(configs, hparams) optimizer = getattr(configs["train_config"].optimizer, optimizer_name) cosine_lr = optimizer.learning_rate.cosine_decay_learning_rate self.assertAlmostEqual(hparams.learning_rate, cosine_lr.learning_rate_base) warmup_scale_factor = warmup_learning_rate / original_learning_rate self.assertAlmostEqual(hparams.learning_rate * warmup_scale_factor, cosine_lr.warmup_learning_rate) def testRMSPropWithNewLearingRate(self): """Tests new learning rates for RMSProp Optimizer.""" self._assertOptimizerWithNewLearningRate("rms_prop_optimizer") def testMomentumOptimizerWithNewLearningRate(self): """Tests new learning rates for Momentum Optimizer.""" self._assertOptimizerWithNewLearningRate("momentum_optimizer") def testAdamOptimizerWithNewLearningRate(self): """Tests new learning rates for Adam Optimizer.""" self._assertOptimizerWithNewLearningRate("adam_optimizer") def testGenericConfigOverride(self): """Tests generic config overrides for all top-level configs.""" # Set one parameter for each of the top-level pipeline configs: pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.ssd.num_classes = 1 pipeline_config.train_config.batch_size = 1 pipeline_config.eval_config.num_visualizations = 1 pipeline_config.train_input_reader.label_map_path = "/some/path" pipeline_config.eval_input_reader.add().label_map_path = "/some/path" pipeline_config.graph_rewriter.quantization.weight_bits = 1 pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") _write_config(pipeline_config, pipeline_config_path) # Override each of the parameters: configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) hparams = tf.contrib.training.HParams( **{ "model.ssd.num_classes": 2, "train_config.batch_size": 2, "train_input_config.label_map_path": "/some/other/path", "eval_config.num_visualizations": 2, "graph_rewriter_config.quantization.weight_bits": 2 }) configs = config_util.merge_external_params_with_configs(configs, hparams) # Ensure that the parameters have the overridden values: self.assertEqual(2, configs["model"].ssd.num_classes) self.assertEqual(2, configs["train_config"].batch_size) self.assertEqual("/some/other/path", configs["train_input_config"].label_map_path) self.assertEqual(2, configs["eval_config"].num_visualizations) self.assertEqual(2, configs["graph_rewriter_config"].quantization.weight_bits) def testNewBatchSize(self): """Tests that batch size is updated appropriately.""" original_batch_size = 2 hparams = tf.contrib.training.HParams(batch_size=16) pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.train_config.batch_size = original_batch_size _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) configs = config_util.merge_external_params_with_configs(configs, hparams) new_batch_size = configs["train_config"].batch_size self.assertEqual(16, new_batch_size) def testNewBatchSizeWithClipping(self): """Tests that batch size is clipped to 1 from below.""" original_batch_size = 2 hparams = tf.contrib.training.HParams(batch_size=0.5) pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.train_config.batch_size = original_batch_size _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) configs = config_util.merge_external_params_with_configs(configs, hparams) new_batch_size = configs["train_config"].batch_size self.assertEqual(1, new_batch_size) # Clipped to 1.0. def testOverwriteBatchSizeWithKeyValue(self): """Tests that batch size is overwritten based on key/value.""" pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.train_config.batch_size = 2 configs = self._create_and_load_test_configs(pipeline_config) hparams = tf.contrib.training.HParams(**{"train_config.batch_size": 10}) configs = config_util.merge_external_params_with_configs(configs, hparams) new_batch_size = configs["train_config"].batch_size self.assertEqual(10, new_batch_size) def testKeyValueOverrideBadKey(self): """Tests that overwriting with a bad key causes an exception.""" pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() configs = self._create_and_load_test_configs(pipeline_config) hparams = tf.contrib.training.HParams(**{"train_config.no_such_field": 10}) with self.assertRaises(ValueError): config_util.merge_external_params_with_configs(configs, hparams) def testOverwriteBatchSizeWithBadValueType(self): """Tests that overwriting with a bad valuye type causes an exception.""" pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.train_config.batch_size = 2 configs = self._create_and_load_test_configs(pipeline_config) # Type should be an integer, but we're passing a string "10". hparams = tf.contrib.training.HParams(**{"train_config.batch_size": "10"}) with self.assertRaises(TypeError): config_util.merge_external_params_with_configs(configs, hparams) def testNewMomentumOptimizerValue(self): """Tests that new momentum value is updated appropriately.""" original_momentum_value = 0.4 hparams = tf.contrib.training.HParams(momentum_optimizer_value=1.1) pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() optimizer_config = pipeline_config.train_config.optimizer.rms_prop_optimizer optimizer_config.momentum_optimizer_value = original_momentum_value _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) configs = config_util.merge_external_params_with_configs(configs, hparams) optimizer_config = configs["train_config"].optimizer.rms_prop_optimizer new_momentum_value = optimizer_config.momentum_optimizer_value self.assertAlmostEqual(1.0, new_momentum_value) # Clipped to 1.0. def testNewClassificationLocalizationWeightRatio(self): """Tests that the loss weight ratio is updated appropriately.""" original_localization_weight = 0.1 original_classification_weight = 0.2 new_weight_ratio = 5.0 hparams = tf.contrib.training.HParams( classification_localization_weight_ratio=new_weight_ratio) pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.ssd.loss.localization_weight = ( original_localization_weight) pipeline_config.model.ssd.loss.classification_weight = ( original_classification_weight) _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) configs = config_util.merge_external_params_with_configs(configs, hparams) loss = configs["model"].ssd.loss self.assertAlmostEqual(1.0, loss.localization_weight) self.assertAlmostEqual(new_weight_ratio, loss.classification_weight) def testNewFocalLossParameters(self): """Tests that the loss weight ratio is updated appropriately.""" original_alpha = 1.0 original_gamma = 1.0 new_alpha = 0.3 new_gamma = 2.0 hparams = tf.contrib.training.HParams( focal_loss_alpha=new_alpha, focal_loss_gamma=new_gamma) pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() classification_loss = pipeline_config.model.ssd.loss.classification_loss classification_loss.weighted_sigmoid_focal.alpha = original_alpha classification_loss.weighted_sigmoid_focal.gamma = original_gamma _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) configs = config_util.merge_external_params_with_configs(configs, hparams) classification_loss = configs["model"].ssd.loss.classification_loss self.assertAlmostEqual(new_alpha, classification_loss.weighted_sigmoid_focal.alpha) self.assertAlmostEqual(new_gamma, classification_loss.weighted_sigmoid_focal.gamma) def testMergingKeywordArguments(self): """Tests that keyword arguments get merged as do hyperparameters.""" original_num_train_steps = 100 desired_num_train_steps = 10 pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.train_config.num_steps = original_num_train_steps _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = {"train_steps": desired_num_train_steps} configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) train_steps = configs["train_config"].num_steps self.assertEqual(desired_num_train_steps, train_steps) def testGetNumberOfClasses(self): """Tests that number of classes can be retrieved.""" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.faster_rcnn.num_classes = 20 _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) number_of_classes = config_util.get_number_of_classes(configs["model"]) self.assertEqual(20, number_of_classes) def testNewTrainInputPath(self): """Tests that train input path can be overwritten with single file.""" original_train_path = ["path/to/data"] new_train_path = "another/path/to/data" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() reader_config = pipeline_config.train_input_reader.tf_record_input_reader reader_config.input_path.extend(original_train_path) _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = {"train_input_path": new_train_path} configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) reader_config = configs["train_input_config"].tf_record_input_reader final_path = reader_config.input_path self.assertEqual([new_train_path], final_path) def testNewTrainInputPathList(self): """Tests that train input path can be overwritten with multiple files.""" original_train_path = ["path/to/data"] new_train_path = ["another/path/to/data", "yet/another/path/to/data"] pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() reader_config = pipeline_config.train_input_reader.tf_record_input_reader reader_config.input_path.extend(original_train_path) _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = {"train_input_path": new_train_path} configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) reader_config = configs["train_input_config"].tf_record_input_reader final_path = reader_config.input_path self.assertEqual(new_train_path, final_path) def testNewLabelMapPath(self): """Tests that label map path can be overwritten in input readers.""" original_label_map_path = "path/to/original/label_map" new_label_map_path = "path//to/new/label_map" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() train_input_reader = pipeline_config.train_input_reader train_input_reader.label_map_path = original_label_map_path eval_input_reader = pipeline_config.eval_input_reader.add() eval_input_reader.label_map_path = original_label_map_path _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = {"label_map_path": new_label_map_path} configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) self.assertEqual(new_label_map_path, configs["train_input_config"].label_map_path) for eval_input_config in configs["eval_input_configs"]: self.assertEqual(new_label_map_path, eval_input_config.label_map_path) def testDontOverwriteEmptyLabelMapPath(self): """Tests that label map path will not by overwritten with empty string.""" original_label_map_path = "path/to/original/label_map" new_label_map_path = "" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() train_input_reader = pipeline_config.train_input_reader train_input_reader.label_map_path = original_label_map_path eval_input_reader = pipeline_config.eval_input_reader.add() eval_input_reader.label_map_path = original_label_map_path _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = {"label_map_path": new_label_map_path} configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) self.assertEqual(original_label_map_path, configs["train_input_config"].label_map_path) self.assertEqual(original_label_map_path, configs["eval_input_configs"][0].label_map_path) def testNewMaskType(self): """Tests that mask type can be overwritten in input readers.""" original_mask_type = input_reader_pb2.NUMERICAL_MASKS new_mask_type = input_reader_pb2.PNG_MASKS pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() train_input_reader = pipeline_config.train_input_reader train_input_reader.mask_type = original_mask_type eval_input_reader = pipeline_config.eval_input_reader.add() eval_input_reader.mask_type = original_mask_type _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = {"mask_type": new_mask_type} configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) self.assertEqual(new_mask_type, configs["train_input_config"].mask_type) self.assertEqual(new_mask_type, configs["eval_input_configs"][0].mask_type) def testUseMovingAverageForEval(self): use_moving_averages_orig = False pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.use_moving_averages = use_moving_averages_orig _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = {"eval_with_moving_averages": True} configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) self.assertEqual(True, configs["eval_config"].use_moving_averages) def testGetImageResizerConfig(self): """Tests that number of classes can be retrieved.""" model_config = model_pb2.DetectionModel() model_config.faster_rcnn.image_resizer.fixed_shape_resizer.height = 100 model_config.faster_rcnn.image_resizer.fixed_shape_resizer.width = 300 image_resizer_config = config_util.get_image_resizer_config(model_config) self.assertEqual(image_resizer_config.fixed_shape_resizer.height, 100) self.assertEqual(image_resizer_config.fixed_shape_resizer.width, 300) def testGetSpatialImageSizeFromFixedShapeResizerConfig(self): image_resizer_config = image_resizer_pb2.ImageResizer() image_resizer_config.fixed_shape_resizer.height = 100 image_resizer_config.fixed_shape_resizer.width = 200 image_shape = config_util.get_spatial_image_size(image_resizer_config) self.assertAllEqual(image_shape, [100, 200]) def testGetSpatialImageSizeFromAspectPreservingResizerConfig(self): image_resizer_config = image_resizer_pb2.ImageResizer() image_resizer_config.keep_aspect_ratio_resizer.min_dimension = 100 image_resizer_config.keep_aspect_ratio_resizer.max_dimension = 600 image_resizer_config.keep_aspect_ratio_resizer.pad_to_max_dimension = True image_shape = config_util.get_spatial_image_size(image_resizer_config) self.assertAllEqual(image_shape, [600, 600]) def testGetSpatialImageSizeFromAspectPreservingResizerDynamic(self): image_resizer_config = image_resizer_pb2.ImageResizer() image_resizer_config.keep_aspect_ratio_resizer.min_dimension = 100 image_resizer_config.keep_aspect_ratio_resizer.max_dimension = 600 image_shape = config_util.get_spatial_image_size(image_resizer_config) self.assertAllEqual(image_shape, [-1, -1]) def testGetSpatialImageSizeFromConditionalShapeResizer(self): image_resizer_config = image_resizer_pb2.ImageResizer() image_resizer_config.conditional_shape_resizer.size_threshold = 100 image_shape = config_util.get_spatial_image_size(image_resizer_config) self.assertAllEqual(image_shape, [-1, -1]) def testEvalShuffle(self): """Tests that `eval_shuffle` keyword arguments are applied correctly.""" original_shuffle = True desired_shuffle = False pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_input_reader.add().shuffle = original_shuffle _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = {"eval_shuffle": desired_shuffle} configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) self.assertEqual(desired_shuffle, configs["eval_input_configs"][0].shuffle) def testTrainShuffle(self): """Tests that `train_shuffle` keyword arguments are applied correctly.""" original_shuffle = True desired_shuffle = False pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.train_input_reader.shuffle = original_shuffle _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = {"train_shuffle": desired_shuffle} configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) train_shuffle = configs["train_input_config"].shuffle self.assertEqual(desired_shuffle, train_shuffle) def testOverWriteRetainOriginalImages(self): """Tests that `train_shuffle` keyword arguments are applied correctly.""" original_retain_original_images = True desired_retain_original_images = False pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_config.retain_original_images = ( original_retain_original_images) _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = { "retain_original_images_in_eval": desired_retain_original_images } configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) retain_original_images = configs["eval_config"].retain_original_images self.assertEqual(desired_retain_original_images, retain_original_images) def testOverwriteAllEvalSampling(self): original_num_eval_examples = 1 new_num_eval_examples = 10 pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_input_reader.add().sample_1_of_n_examples = ( original_num_eval_examples) pipeline_config.eval_input_reader.add().sample_1_of_n_examples = ( original_num_eval_examples) _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = {"sample_1_of_n_eval_examples": new_num_eval_examples} configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) for eval_input_config in configs["eval_input_configs"]: self.assertEqual(new_num_eval_examples, eval_input_config.sample_1_of_n_examples) def testOverwriteAllEvalNumEpochs(self): original_num_epochs = 10 new_num_epochs = 1 pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_input_reader.add().num_epochs = original_num_epochs pipeline_config.eval_input_reader.add().num_epochs = original_num_epochs _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = {"eval_num_epochs": new_num_epochs} configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) for eval_input_config in configs["eval_input_configs"]: self.assertEqual(new_num_epochs, eval_input_config.num_epochs) def testUpdateMaskTypeForAllInputConfigs(self): original_mask_type = input_reader_pb2.NUMERICAL_MASKS new_mask_type = input_reader_pb2.PNG_MASKS pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() train_config = pipeline_config.train_input_reader train_config.mask_type = original_mask_type eval_1 = pipeline_config.eval_input_reader.add() eval_1.mask_type = original_mask_type eval_1.name = "eval_1" eval_2 = pipeline_config.eval_input_reader.add() eval_2.mask_type = original_mask_type eval_2.name = "eval_2" _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = {"mask_type": new_mask_type} configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) self.assertEqual(configs["train_input_config"].mask_type, new_mask_type) for eval_input_config in configs["eval_input_configs"]: self.assertEqual(eval_input_config.mask_type, new_mask_type) def testErrorOverwritingMultipleInputConfig(self): original_shuffle = False new_shuffle = True pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() eval_1 = pipeline_config.eval_input_reader.add() eval_1.shuffle = original_shuffle eval_1.name = "eval_1" eval_2 = pipeline_config.eval_input_reader.add() eval_2.shuffle = original_shuffle eval_2.name = "eval_2" _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) override_dict = {"eval_shuffle": new_shuffle} with self.assertRaises(ValueError): configs = config_util.merge_external_params_with_configs( configs, kwargs_dict=override_dict) def testCheckAndParseInputConfigKey(self): pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_input_reader.add().name = "eval_1" pipeline_config.eval_input_reader.add().name = "eval_2" _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) specific_shuffle_update_key = "eval_input_configs:eval_2:shuffle" is_valid_input_config_key, key_name, input_name, field_name = ( config_util.check_and_parse_input_config_key( configs, specific_shuffle_update_key)) self.assertTrue(is_valid_input_config_key) self.assertEqual(key_name, "eval_input_configs") self.assertEqual(input_name, "eval_2") self.assertEqual(field_name, "shuffle") legacy_shuffle_update_key = "eval_shuffle" is_valid_input_config_key, key_name, input_name, field_name = ( config_util.check_and_parse_input_config_key(configs, legacy_shuffle_update_key)) self.assertTrue(is_valid_input_config_key) self.assertEqual(key_name, "eval_input_configs") self.assertEqual(input_name, None) self.assertEqual(field_name, "shuffle") non_input_config_update_key = "label_map_path" is_valid_input_config_key, key_name, input_name, field_name = ( config_util.check_and_parse_input_config_key( configs, non_input_config_update_key)) self.assertFalse(is_valid_input_config_key) self.assertEqual(key_name, None) self.assertEqual(input_name, None) self.assertEqual(field_name, "label_map_path") with self.assertRaisesRegexp(ValueError, "Invalid key format when overriding configs."): config_util.check_and_parse_input_config_key( configs, "train_input_config:shuffle") with self.assertRaisesRegexp( ValueError, "Invalid key_name when overriding input config."): config_util.check_and_parse_input_config_key( configs, "invalid_key_name:train_name:shuffle") with self.assertRaisesRegexp( ValueError, "Invalid input_name when overriding input config."): config_util.check_and_parse_input_config_key( configs, "eval_input_configs:unknown_eval_name:shuffle") with self.assertRaisesRegexp( ValueError, "Invalid field_name when overriding input config."): config_util.check_and_parse_input_config_key( configs, "eval_input_configs:eval_2:unknown_field_name") def testUpdateInputReaderConfigSuccess(self): original_shuffle = False new_shuffle = True pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.train_input_reader.shuffle = original_shuffle _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) config_util.update_input_reader_config( configs, key_name="train_input_config", input_name=None, field_name="shuffle", value=new_shuffle) self.assertEqual(configs["train_input_config"].shuffle, new_shuffle) config_util.update_input_reader_config( configs, key_name="train_input_config", input_name=None, field_name="shuffle", value=new_shuffle) self.assertEqual(configs["train_input_config"].shuffle, new_shuffle) def testUpdateInputReaderConfigErrors(self): pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.eval_input_reader.add().name = "same_eval_name" pipeline_config.eval_input_reader.add().name = "same_eval_name" _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) with self.assertRaisesRegexp(ValueError, "Duplicate input name found when overriding."): config_util.update_input_reader_config( configs, key_name="eval_input_configs", input_name="same_eval_name", field_name="shuffle", value=False) with self.assertRaisesRegexp( ValueError, "Input name name_not_exist not found when overriding."): config_util.update_input_reader_config( configs, key_name="eval_input_configs", input_name="name_not_exist", field_name="shuffle", value=False) with self.assertRaisesRegexp(ValueError, "Unknown input config overriding."): config_util.update_input_reader_config( configs, key_name="eval_input_configs", input_name=None, field_name="shuffle", value=False) if __name__ == "__main__": tf.test.main()