# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test utility functions for manipulating Keras models.""" import tensorflow as tf from object_detection.utils import model_util class ExtractSubmodelUtilTest(tf.test.TestCase): def test_simple_model(self): inputs = tf.keras.Input(shape=(256,)) # Returns a placeholder tensor # A layer instance is callable on a tensor, and returns a tensor. x = tf.keras.layers.Dense(128, activation='relu', name='a')(inputs) x = tf.keras.layers.Dense(64, activation='relu', name='b')(x) x = tf.keras.layers.Dense(32, activation='relu', name='c')(x) x = tf.keras.layers.Dense(16, activation='relu', name='d')(x) x = tf.keras.layers.Dense(8, activation='relu', name='e')(x) predictions = tf.keras.layers.Dense(10, activation='softmax')(x) model = tf.keras.Model(inputs=inputs, outputs=predictions) new_in = model.get_layer( name='b').input new_out = model.get_layer( name='d').output new_model = model_util.extract_submodel( model=model, inputs=new_in, outputs=new_out) batch_size = 3 ones = tf.ones((batch_size, 128)) final_out = new_model(ones) self.assertAllEqual(final_out.shape, (batch_size, 16)) if __name__ == '__main__': tf.test.main()