# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.utils.shape_utils.""" import numpy as np import tensorflow as tf from object_detection.utils import shape_utils class UtilTest(tf.test.TestCase): def test_pad_tensor_using_integer_input(self): t1 = tf.constant([1], dtype=tf.int32) pad_t1 = shape_utils.pad_tensor(t1, 2) t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32) pad_t2 = shape_utils.pad_tensor(t2, 2) self.assertEqual(2, pad_t1.get_shape()[0]) self.assertEqual(2, pad_t2.get_shape()[0]) with self.test_session() as sess: pad_t1_result, pad_t2_result = sess.run([pad_t1, pad_t2]) self.assertAllEqual([1, 0], pad_t1_result) self.assertAllClose([[0.1, 0.2], [0, 0]], pad_t2_result) def test_pad_tensor_using_tensor_input(self): t1 = tf.constant([1], dtype=tf.int32) pad_t1 = shape_utils.pad_tensor(t1, tf.constant(2)) t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32) pad_t2 = shape_utils.pad_tensor(t2, tf.constant(2)) with self.test_session() as sess: pad_t1_result, pad_t2_result = sess.run([pad_t1, pad_t2]) self.assertAllEqual([1, 0], pad_t1_result) self.assertAllClose([[0.1, 0.2], [0, 0]], pad_t2_result) def test_clip_tensor_using_integer_input(self): t1 = tf.constant([1, 2, 3], dtype=tf.int32) clip_t1 = shape_utils.clip_tensor(t1, 2) t2 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32) clip_t2 = shape_utils.clip_tensor(t2, 2) self.assertEqual(2, clip_t1.get_shape()[0]) self.assertEqual(2, clip_t2.get_shape()[0]) with self.test_session() as sess: clip_t1_result, clip_t2_result = sess.run([clip_t1, clip_t2]) self.assertAllEqual([1, 2], clip_t1_result) self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], clip_t2_result) def test_clip_tensor_using_tensor_input(self): t1 = tf.constant([1, 2, 3], dtype=tf.int32) clip_t1 = shape_utils.clip_tensor(t1, tf.constant(2)) t2 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32) clip_t2 = shape_utils.clip_tensor(t2, tf.constant(2)) with self.test_session() as sess: clip_t1_result, clip_t2_result = sess.run([clip_t1, clip_t2]) self.assertAllEqual([1, 2], clip_t1_result) self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], clip_t2_result) def test_pad_or_clip_tensor_using_integer_input(self): t1 = tf.constant([1], dtype=tf.int32) tt1 = shape_utils.pad_or_clip_tensor(t1, 2) t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32) tt2 = shape_utils.pad_or_clip_tensor(t2, 2) t3 = tf.constant([1, 2, 3], dtype=tf.int32) tt3 = shape_utils.clip_tensor(t3, 2) t4 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32) tt4 = shape_utils.clip_tensor(t4, 2) self.assertEqual(2, tt1.get_shape()[0]) self.assertEqual(2, tt2.get_shape()[0]) self.assertEqual(2, tt3.get_shape()[0]) self.assertEqual(2, tt4.get_shape()[0]) with self.test_session() as sess: tt1_result, tt2_result, tt3_result, tt4_result = sess.run( [tt1, tt2, tt3, tt4]) self.assertAllEqual([1, 0], tt1_result) self.assertAllClose([[0.1, 0.2], [0, 0]], tt2_result) self.assertAllEqual([1, 2], tt3_result) self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], tt4_result) def test_pad_or_clip_tensor_using_tensor_input(self): t1 = tf.constant([1], dtype=tf.int32) tt1 = shape_utils.pad_or_clip_tensor(t1, tf.constant(2)) t2 = tf.constant([[0.1, 0.2]], dtype=tf.float32) tt2 = shape_utils.pad_or_clip_tensor(t2, tf.constant(2)) t3 = tf.constant([1, 2, 3], dtype=tf.int32) tt3 = shape_utils.clip_tensor(t3, tf.constant(2)) t4 = tf.constant([[0.1, 0.2], [0.2, 0.4], [0.5, 0.8]], dtype=tf.float32) tt4 = shape_utils.clip_tensor(t4, tf.constant(2)) with self.test_session() as sess: tt1_result, tt2_result, tt3_result, tt4_result = sess.run( [tt1, tt2, tt3, tt4]) self.assertAllEqual([1, 0], tt1_result) self.assertAllClose([[0.1, 0.2], [0, 0]], tt2_result) self.assertAllEqual([1, 2], tt3_result) self.assertAllClose([[0.1, 0.2], [0.2, 0.4]], tt4_result) def test_combines_static_dynamic_shape(self): tensor = tf.placeholder(tf.float32, shape=(None, 2, 3)) combined_shape = shape_utils.combined_static_and_dynamic_shape( tensor) self.assertTrue(tf.contrib.framework.is_tensor(combined_shape[0])) self.assertListEqual(combined_shape[1:], [2, 3]) def test_pad_or_clip_nd_tensor(self): tensor_placeholder = tf.placeholder(tf.float32, [None, 5, 4, 7]) output_tensor = shape_utils.pad_or_clip_nd( tensor_placeholder, [None, 3, 5, tf.constant(6)]) self.assertAllEqual(output_tensor.shape.as_list(), [None, 3, 5, None]) with self.test_session() as sess: output_tensor_np = sess.run( output_tensor, feed_dict={ tensor_placeholder: np.random.rand(2, 5, 4, 7), }) self.assertAllEqual(output_tensor_np.shape, [2, 3, 5, 6]) class StaticOrDynamicMapFnTest(tf.test.TestCase): def test_with_dynamic_shape(self): def fn(input_tensor): return tf.reduce_sum(input_tensor) input_tensor = tf.placeholder(tf.float32, shape=(None, 2)) map_fn_output = shape_utils.static_or_dynamic_map_fn(fn, input_tensor) op_names = [op.name for op in tf.get_default_graph().get_operations()] self.assertTrue(any(['map' == op_name[:3] for op_name in op_names])) with self.test_session() as sess: result1 = sess.run( map_fn_output, feed_dict={ input_tensor: [[1, 2], [3, 1], [0, 4]]}) result2 = sess.run( map_fn_output, feed_dict={ input_tensor: [[-1, 1], [0, 9]]}) self.assertAllEqual(result1, [3, 4, 4]) self.assertAllEqual(result2, [0, 9]) def test_with_static_shape(self): def fn(input_tensor): return tf.reduce_sum(input_tensor) input_tensor = tf.constant([[1, 2], [3, 1], [0, 4]], dtype=tf.float32) map_fn_output = shape_utils.static_or_dynamic_map_fn(fn, input_tensor) op_names = [op.name for op in tf.get_default_graph().get_operations()] self.assertTrue(all(['map' != op_name[:3] for op_name in op_names])) with self.test_session() as sess: result = sess.run(map_fn_output) self.assertAllEqual(result, [3, 4, 4]) def test_with_multiple_dynamic_shapes(self): def fn(elems): input_tensor, scalar_index_tensor = elems return tf.reshape(tf.slice(input_tensor, scalar_index_tensor, [1]), []) input_tensor = tf.placeholder(tf.float32, shape=(None, 3)) scalar_index_tensor = tf.placeholder(tf.int32, shape=(None, 1)) map_fn_output = shape_utils.static_or_dynamic_map_fn( fn, [input_tensor, scalar_index_tensor], dtype=tf.float32) op_names = [op.name for op in tf.get_default_graph().get_operations()] self.assertTrue(any(['map' == op_name[:3] for op_name in op_names])) with self.test_session() as sess: result1 = sess.run( map_fn_output, feed_dict={ input_tensor: [[1, 2, 3], [4, 5, -1], [0, 6, 9]], scalar_index_tensor: [[0], [2], [1]], }) result2 = sess.run( map_fn_output, feed_dict={ input_tensor: [[-1, 1, 0], [3, 9, 30]], scalar_index_tensor: [[1], [0]] }) self.assertAllEqual(result1, [1, -1, 6]) self.assertAllEqual(result2, [1, 3]) def test_with_multiple_static_shapes(self): def fn(elems): input_tensor, scalar_index_tensor = elems return tf.reshape(tf.slice(input_tensor, scalar_index_tensor, [1]), []) input_tensor = tf.constant([[1, 2, 3], [4, 5, -1], [0, 6, 9]], dtype=tf.float32) scalar_index_tensor = tf.constant([[0], [2], [1]], dtype=tf.int32) map_fn_output = shape_utils.static_or_dynamic_map_fn( fn, [input_tensor, scalar_index_tensor], dtype=tf.float32) op_names = [op.name for op in tf.get_default_graph().get_operations()] self.assertTrue(all(['map' != op_name[:3] for op_name in op_names])) with self.test_session() as sess: result = sess.run(map_fn_output) self.assertAllEqual(result, [1, -1, 6]) def test_fails_with_nested_input(self): def fn(input_tensor): return input_tensor input_tensor1 = tf.constant([1]) input_tensor2 = tf.constant([2]) with self.assertRaisesRegexp( ValueError, '`elems` must be a Tensor or list of Tensors.'): shape_utils.static_or_dynamic_map_fn( fn, [input_tensor1, [input_tensor2]], dtype=tf.float32) class CheckMinImageShapeTest(tf.test.TestCase): def test_check_min_image_dim_static_shape(self): input_tensor = tf.constant(np.zeros([1, 42, 42, 3])) _ = shape_utils.check_min_image_dim(33, input_tensor) with self.assertRaisesRegexp( ValueError, 'image size must be >= 64 in both height and width.'): _ = shape_utils.check_min_image_dim(64, input_tensor) def test_check_min_image_dim_dynamic_shape(self): input_placeholder = tf.placeholder(tf.float32, shape=[1, None, None, 3]) image_tensor = shape_utils.check_min_image_dim(33, input_placeholder) with self.test_session() as sess: sess.run(image_tensor, feed_dict={input_placeholder: np.zeros([1, 42, 42, 3])}) with self.assertRaises(tf.errors.InvalidArgumentError): sess.run(image_tensor, feed_dict={input_placeholder: np.zeros([1, 32, 32, 3])}) class AssertShapeEqualTest(tf.test.TestCase): def test_unequal_static_shape_raises_exception(self): shape_a = tf.constant(np.zeros([4, 2, 2, 1])) shape_b = tf.constant(np.zeros([4, 2, 3, 1])) with self.assertRaisesRegexp( ValueError, 'Unequal shapes'): shape_utils.assert_shape_equal( shape_utils.combined_static_and_dynamic_shape(shape_a), shape_utils.combined_static_and_dynamic_shape(shape_b)) def test_equal_static_shape_succeeds(self): shape_a = tf.constant(np.zeros([4, 2, 2, 1])) shape_b = tf.constant(np.zeros([4, 2, 2, 1])) with self.test_session() as sess: op = shape_utils.assert_shape_equal( shape_utils.combined_static_and_dynamic_shape(shape_a), shape_utils.combined_static_and_dynamic_shape(shape_b)) sess.run(op) def test_unequal_dynamic_shape_raises_tf_assert(self): tensor_a = tf.placeholder(tf.float32, shape=[1, None, None, 3]) tensor_b = tf.placeholder(tf.float32, shape=[1, None, None, 3]) op = shape_utils.assert_shape_equal( shape_utils.combined_static_and_dynamic_shape(tensor_a), shape_utils.combined_static_and_dynamic_shape(tensor_b)) with self.test_session() as sess: with self.assertRaises(tf.errors.InvalidArgumentError): sess.run(op, feed_dict={tensor_a: np.zeros([1, 2, 2, 3]), tensor_b: np.zeros([1, 4, 4, 3])}) def test_equal_dynamic_shape_succeeds(self): tensor_a = tf.placeholder(tf.float32, shape=[1, None, None, 3]) tensor_b = tf.placeholder(tf.float32, shape=[1, None, None, 3]) op = shape_utils.assert_shape_equal( shape_utils.combined_static_and_dynamic_shape(tensor_a), shape_utils.combined_static_and_dynamic_shape(tensor_b)) with self.test_session() as sess: sess.run(op, feed_dict={tensor_a: np.zeros([1, 2, 2, 3]), tensor_b: np.zeros([1, 2, 2, 3])}) def test_unequal_static_shape_along_first_dim_raises_exception(self): shape_a = tf.constant(np.zeros([4, 2, 2, 1])) shape_b = tf.constant(np.zeros([6, 2, 3, 1])) with self.assertRaisesRegexp( ValueError, 'Unequal first dimension'): shape_utils.assert_shape_equal_along_first_dimension( shape_utils.combined_static_and_dynamic_shape(shape_a), shape_utils.combined_static_and_dynamic_shape(shape_b)) def test_equal_static_shape_along_first_dim_succeeds(self): shape_a = tf.constant(np.zeros([4, 2, 2, 1])) shape_b = tf.constant(np.zeros([4, 7, 2])) with self.test_session() as sess: op = shape_utils.assert_shape_equal_along_first_dimension( shape_utils.combined_static_and_dynamic_shape(shape_a), shape_utils.combined_static_and_dynamic_shape(shape_b)) sess.run(op) def test_unequal_dynamic_shape_along_first_dim_raises_tf_assert(self): tensor_a = tf.placeholder(tf.float32, shape=[None, None, None, 3]) tensor_b = tf.placeholder(tf.float32, shape=[None, None, 3]) op = shape_utils.assert_shape_equal_along_first_dimension( shape_utils.combined_static_and_dynamic_shape(tensor_a), shape_utils.combined_static_and_dynamic_shape(tensor_b)) with self.test_session() as sess: with self.assertRaises(tf.errors.InvalidArgumentError): sess.run(op, feed_dict={tensor_a: np.zeros([1, 2, 2, 3]), tensor_b: np.zeros([2, 4, 3])}) def test_equal_dynamic_shape_along_first_dim_succeeds(self): tensor_a = tf.placeholder(tf.float32, shape=[None, None, None, 3]) tensor_b = tf.placeholder(tf.float32, shape=[None]) op = shape_utils.assert_shape_equal_along_first_dimension( shape_utils.combined_static_and_dynamic_shape(tensor_a), shape_utils.combined_static_and_dynamic_shape(tensor_b)) with self.test_session() as sess: sess.run(op, feed_dict={tensor_a: np.zeros([5, 2, 2, 3]), tensor_b: np.zeros([5])}) class FlattenExpandDimensionTest(tf.test.TestCase): def test_flatten_given_dims(self): inputs = tf.random_uniform([5, 2, 10, 10, 3]) actual_flattened = shape_utils.flatten_dimensions(inputs, first=1, last=3) expected_flattened = tf.reshape(inputs, [5, 20, 10, 3]) with self.test_session() as sess: (actual_flattened_np, expected_flattened_np) = sess.run([actual_flattened, expected_flattened]) self.assertAllClose(expected_flattened_np, actual_flattened_np) def test_raises_value_error_incorrect_dimensions(self): inputs = tf.random_uniform([5, 2, 10, 10, 3]) with self.assertRaises(ValueError): shape_utils.flatten_dimensions(inputs, first=0, last=6) def test_flatten_first_two_dimensions(self): inputs = tf.constant( [ [[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]] ], dtype=tf.int32) flattened_tensor = shape_utils.flatten_first_n_dimensions( inputs, 2) with self.test_session() as sess: flattened_tensor_out = sess.run(flattened_tensor) expected_output = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]] self.assertAllEqual(expected_output, flattened_tensor_out) def test_expand_first_dimension(self): inputs = tf.constant( [ [1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12] ], dtype=tf.int32) dims = [3, 2] expanded_tensor = shape_utils.expand_first_dimension( inputs, dims) with self.test_session() as sess: expanded_tensor_out = sess.run(expanded_tensor) expected_output = [ [[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]]] self.assertAllEqual(expected_output, expanded_tensor_out) def test_expand_first_dimension_with_incompatible_dims(self): inputs_default = tf.constant( [ [[1, 2]], [[3, 4]], [[5, 6]], ], dtype=tf.int32) inputs = tf.placeholder_with_default(inputs_default, [None, 1, 2]) dims = [3, 2] expanded_tensor = shape_utils.expand_first_dimension( inputs, dims) with self.test_session() as sess: with self.assertRaises(tf.errors.InvalidArgumentError): sess.run(expanded_tensor) if __name__ == '__main__': tf.test.main()