# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A set of functions that are used for visualization. These functions often receive an image, perform some visualization on the image. The functions do not return a value, instead they modify the image itself. """ import abc import collections # Set headless-friendly backend. import matplotlib; matplotlib.use('Agg') # pylint: disable=multiple-statements import matplotlib.pyplot as plt # pylint: disable=g-import-not-at-top import numpy as np import PIL.Image as Image import PIL.ImageColor as ImageColor import PIL.ImageDraw as ImageDraw import PIL.ImageFont as ImageFont import six import tensorflow as tf from object_detection.core import standard_fields as fields from object_detection.utils import shape_utils _TITLE_LEFT_MARGIN = 10 _TITLE_TOP_MARGIN = 10 STANDARD_COLORS = [ 'AliceBlue', 'Chartreuse', 'Aqua', 'Aquamarine', 'Azure', 'Beige', 'Bisque', 'BlanchedAlmond', 'BlueViolet', 'BurlyWood', 'CadetBlue', 'AntiqueWhite', 'Chocolate', 'Coral', 'CornflowerBlue', 'Cornsilk', 'Crimson', 'Cyan', 'DarkCyan', 'DarkGoldenRod', 'DarkGrey', 'DarkKhaki', 'DarkOrange', 'DarkOrchid', 'DarkSalmon', 'DarkSeaGreen', 'DarkTurquoise', 'DarkViolet', 'DeepPink', 'DeepSkyBlue', 'DodgerBlue', 'FireBrick', 'FloralWhite', 'ForestGreen', 'Fuchsia', 'Gainsboro', 'GhostWhite', 'Gold', 'GoldenRod', 'Salmon', 'Tan', 'HoneyDew', 'HotPink', 'IndianRed', 'Ivory', 'Khaki', 'Lavender', 'LavenderBlush', 'LawnGreen', 'LemonChiffon', 'LightBlue', 'LightCoral', 'LightCyan', 'LightGoldenRodYellow', 'LightGray', 'LightGrey', 'LightGreen', 'LightPink', 'LightSalmon', 'LightSeaGreen', 'LightSkyBlue', 'LightSlateGray', 'LightSlateGrey', 'LightSteelBlue', 'LightYellow', 'Lime', 'LimeGreen', 'Linen', 'Magenta', 'MediumAquaMarine', 'MediumOrchid', 'MediumPurple', 'MediumSeaGreen', 'MediumSlateBlue', 'MediumSpringGreen', 'MediumTurquoise', 'MediumVioletRed', 'MintCream', 'MistyRose', 'Moccasin', 'NavajoWhite', 'OldLace', 'Olive', 'OliveDrab', 'Orange', 'OrangeRed', 'Orchid', 'PaleGoldenRod', 'PaleGreen', 'PaleTurquoise', 'PaleVioletRed', 'PapayaWhip', 'PeachPuff', 'Peru', 'Pink', 'Plum', 'PowderBlue', 'Purple', 'Red', 'RosyBrown', 'RoyalBlue', 'SaddleBrown', 'Green', 'SandyBrown', 'SeaGreen', 'SeaShell', 'Sienna', 'Silver', 'SkyBlue', 'SlateBlue', 'SlateGray', 'SlateGrey', 'Snow', 'SpringGreen', 'SteelBlue', 'GreenYellow', 'Teal', 'Thistle', 'Tomato', 'Turquoise', 'Violet', 'Wheat', 'White', 'WhiteSmoke', 'Yellow', 'YellowGreen' ] def _get_multiplier_for_color_randomness(): """Returns a multiplier to get semi-random colors from successive indices. This function computes a prime number, p, in the range [2, 17] that: - is closest to len(STANDARD_COLORS) / 10 - does not divide len(STANDARD_COLORS) If no prime numbers in that range satisfy the constraints, p is returned as 1. Once p is established, it can be used as a multiplier to select non-consecutive colors from STANDARD_COLORS: colors = [(p * i) % len(STANDARD_COLORS) for i in range(20)] """ num_colors = len(STANDARD_COLORS) prime_candidates = [5, 7, 11, 13, 17] # Remove all prime candidates that divide the number of colors. prime_candidates = [p for p in prime_candidates if num_colors % p] if not prime_candidates: return 1 # Return the closest prime number to num_colors / 10. abs_distance = [np.abs(num_colors / 10. - p) for p in prime_candidates] num_candidates = len(abs_distance) inds = [i for _, i in sorted(zip(abs_distance, range(num_candidates)))] return prime_candidates[inds[0]] def save_image_array_as_png(image, output_path): """Saves an image (represented as a numpy array) to PNG. Args: image: a numpy array with shape [height, width, 3]. output_path: path to which image should be written. """ image_pil = Image.fromarray(np.uint8(image)).convert('RGB') with tf.gfile.Open(output_path, 'w') as fid: image_pil.save(fid, 'PNG') def encode_image_array_as_png_str(image): """Encodes a numpy array into a PNG string. Args: image: a numpy array with shape [height, width, 3]. Returns: PNG encoded image string. """ image_pil = Image.fromarray(np.uint8(image)) output = six.BytesIO() image_pil.save(output, format='PNG') png_string = output.getvalue() output.close() return png_string def draw_bounding_box_on_image_array(image, ymin, xmin, ymax, xmax, color='red', thickness=4, display_str_list=(), use_normalized_coordinates=True): """Adds a bounding box to an image (numpy array). Bounding box coordinates can be specified in either absolute (pixel) or normalized coordinates by setting the use_normalized_coordinates argument. Args: image: a numpy array with shape [height, width, 3]. ymin: ymin of bounding box. xmin: xmin of bounding box. ymax: ymax of bounding box. xmax: xmax of bounding box. color: color to draw bounding box. Default is red. thickness: line thickness. Default value is 4. display_str_list: list of strings to display in box (each to be shown on its own line). use_normalized_coordinates: If True (default), treat coordinates ymin, xmin, ymax, xmax as relative to the image. Otherwise treat coordinates as absolute. """ image_pil = Image.fromarray(np.uint8(image)).convert('RGB') draw_bounding_box_on_image(image_pil, ymin, xmin, ymax, xmax, color, thickness, display_str_list, use_normalized_coordinates) np.copyto(image, np.array(image_pil)) def draw_bounding_box_on_image(image, ymin, xmin, ymax, xmax, color='red', thickness=4, display_str_list=(), use_normalized_coordinates=True): """Adds a bounding box to an image. Bounding box coordinates can be specified in either absolute (pixel) or normalized coordinates by setting the use_normalized_coordinates argument. Each string in display_str_list is displayed on a separate line above the bounding box in black text on a rectangle filled with the input 'color'. If the top of the bounding box extends to the edge of the image, the strings are displayed below the bounding box. Args: image: a PIL.Image object. ymin: ymin of bounding box. xmin: xmin of bounding box. ymax: ymax of bounding box. xmax: xmax of bounding box. color: color to draw bounding box. Default is red. thickness: line thickness. Default value is 4. display_str_list: list of strings to display in box (each to be shown on its own line). use_normalized_coordinates: If True (default), treat coordinates ymin, xmin, ymax, xmax as relative to the image. Otherwise treat coordinates as absolute. """ draw = ImageDraw.Draw(image) im_width, im_height = image.size if use_normalized_coordinates: (left, right, top, bottom) = (xmin * im_width, xmax * im_width, ymin * im_height, ymax * im_height) else: (left, right, top, bottom) = (xmin, xmax, ymin, ymax) draw.line([(left, top), (left, bottom), (right, bottom), (right, top), (left, top)], width=thickness, fill=color) try: font = ImageFont.truetype('arial.ttf', 24) except IOError: font = ImageFont.load_default() # If the total height of the display strings added to the top of the bounding # box exceeds the top of the image, stack the strings below the bounding box # instead of above. display_str_heights = [font.getsize(ds)[1] for ds in display_str_list] # Each display_str has a top and bottom margin of 0.05x. total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights) if top > total_display_str_height: text_bottom = top else: text_bottom = bottom + total_display_str_height # Reverse list and print from bottom to top. for display_str in display_str_list[::-1]: text_width, text_height = font.getsize(display_str) margin = np.ceil(0.05 * text_height) draw.rectangle( [(left, text_bottom - text_height - 2 * margin), (left + text_width, text_bottom)], fill=color) draw.text( (left + margin, text_bottom - text_height - margin), display_str, fill='black', font=font) text_bottom -= text_height - 2 * margin def draw_bounding_boxes_on_image_array(image, boxes, color='red', thickness=4, display_str_list_list=()): """Draws bounding boxes on image (numpy array). Args: image: a numpy array object. boxes: a 2 dimensional numpy array of [N, 4]: (ymin, xmin, ymax, xmax). The coordinates are in normalized format between [0, 1]. color: color to draw bounding box. Default is red. thickness: line thickness. Default value is 4. display_str_list_list: list of list of strings. a list of strings for each bounding box. The reason to pass a list of strings for a bounding box is that it might contain multiple labels. Raises: ValueError: if boxes is not a [N, 4] array """ image_pil = Image.fromarray(image) draw_bounding_boxes_on_image(image_pil, boxes, color, thickness, display_str_list_list) np.copyto(image, np.array(image_pil)) def draw_bounding_boxes_on_image(image, boxes, color='red', thickness=4, display_str_list_list=()): """Draws bounding boxes on image. Args: image: a PIL.Image object. boxes: a 2 dimensional numpy array of [N, 4]: (ymin, xmin, ymax, xmax). The coordinates are in normalized format between [0, 1]. color: color to draw bounding box. Default is red. thickness: line thickness. Default value is 4. display_str_list_list: list of list of strings. a list of strings for each bounding box. The reason to pass a list of strings for a bounding box is that it might contain multiple labels. Raises: ValueError: if boxes is not a [N, 4] array """ boxes_shape = boxes.shape if not boxes_shape: return if len(boxes_shape) != 2 or boxes_shape[1] != 4: raise ValueError('Input must be of size [N, 4]') for i in range(boxes_shape[0]): display_str_list = () if display_str_list_list: display_str_list = display_str_list_list[i] draw_bounding_box_on_image(image, boxes[i, 0], boxes[i, 1], boxes[i, 2], boxes[i, 3], color, thickness, display_str_list) def create_visualization_fn(category_index, include_masks=False, include_keypoints=False, include_track_ids=False, **kwargs): """Constructs a visualization function that can be wrapped in a py_func. py_funcs only accept positional arguments. This function returns a suitable function with the correct positional argument mapping. The positional arguments in order are: 0: image 1: boxes 2: classes 3: scores [4-6]: masks (optional) [4-6]: keypoints (optional) [4-6]: track_ids (optional) -- Example 1 -- vis_only_masks_fn = create_visualization_fn(category_index, include_masks=True, include_keypoints=False, include_track_ids=False, **kwargs) image = tf.py_func(vis_only_masks_fn, inp=[image, boxes, classes, scores, masks], Tout=tf.uint8) -- Example 2 -- vis_masks_and_track_ids_fn = create_visualization_fn(category_index, include_masks=True, include_keypoints=False, include_track_ids=True, **kwargs) image = tf.py_func(vis_masks_and_track_ids_fn, inp=[image, boxes, classes, scores, masks, track_ids], Tout=tf.uint8) Args: category_index: a dict that maps integer ids to category dicts. e.g. {1: {1: 'dog'}, 2: {2: 'cat'}, ...} include_masks: Whether masks should be expected as a positional argument in the returned function. include_keypoints: Whether keypoints should be expected as a positional argument in the returned function. include_track_ids: Whether track ids should be expected as a positional argument in the returned function. **kwargs: Additional kwargs that will be passed to visualize_boxes_and_labels_on_image_array. Returns: Returns a function that only takes tensors as positional arguments. """ def visualization_py_func_fn(*args): """Visualization function that can be wrapped in a tf.py_func. Args: *args: First 4 positional arguments must be: image - uint8 numpy array with shape (img_height, img_width, 3). boxes - a numpy array of shape [N, 4]. classes - a numpy array of shape [N]. scores - a numpy array of shape [N] or None. -- Optional positional arguments -- instance_masks - a numpy array of shape [N, image_height, image_width]. keypoints - a numpy array of shape [N, num_keypoints, 2]. track_ids - a numpy array of shape [N] with unique track ids. Returns: uint8 numpy array with shape (img_height, img_width, 3) with overlaid boxes. """ image = args[0] boxes = args[1] classes = args[2] scores = args[3] masks = keypoints = track_ids = None pos_arg_ptr = 4 # Positional argument for first optional tensor (masks). if include_masks: masks = args[pos_arg_ptr] pos_arg_ptr += 1 if include_keypoints: keypoints = args[pos_arg_ptr] pos_arg_ptr += 1 if include_track_ids: track_ids = args[pos_arg_ptr] return visualize_boxes_and_labels_on_image_array( image, boxes, classes, scores, category_index=category_index, instance_masks=masks, keypoints=keypoints, track_ids=track_ids, **kwargs) return visualization_py_func_fn def _resize_original_image(image, image_shape): image = tf.expand_dims(image, 0) image = tf.image.resize_images( image, image_shape, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR, align_corners=True) return tf.cast(tf.squeeze(image, 0), tf.uint8) def draw_bounding_boxes_on_image_tensors(images, boxes, classes, scores, category_index, original_image_spatial_shape=None, true_image_shape=None, instance_masks=None, keypoints=None, track_ids=None, max_boxes_to_draw=20, min_score_thresh=0.2, use_normalized_coordinates=True): """Draws bounding boxes, masks, and keypoints on batch of image tensors. Args: images: A 4D uint8 image tensor of shape [N, H, W, C]. If C > 3, additional channels will be ignored. If C = 1, then we convert the images to RGB images. boxes: [N, max_detections, 4] float32 tensor of detection boxes. classes: [N, max_detections] int tensor of detection classes. Note that classes are 1-indexed. scores: [N, max_detections] float32 tensor of detection scores. category_index: a dict that maps integer ids to category dicts. e.g. {1: {1: 'dog'}, 2: {2: 'cat'}, ...} original_image_spatial_shape: [N, 2] tensor containing the spatial size of the original image. true_image_shape: [N, 3] tensor containing the spatial size of unpadded original_image. instance_masks: A 4D uint8 tensor of shape [N, max_detection, H, W] with instance masks. keypoints: A 4D float32 tensor of shape [N, max_detection, num_keypoints, 2] with keypoints. track_ids: [N, max_detections] int32 tensor of unique tracks ids (i.e. instance ids for each object). If provided, the color-coding of boxes is dictated by these ids, and not classes. max_boxes_to_draw: Maximum number of boxes to draw on an image. Default 20. min_score_thresh: Minimum score threshold for visualization. Default 0.2. use_normalized_coordinates: Whether to assume boxes and kepoints are in normalized coordinates (as opposed to absolute coordiantes). Default is True. Returns: 4D image tensor of type uint8, with boxes drawn on top. """ # Additional channels are being ignored. if images.shape[3] > 3: images = images[:, :, :, 0:3] elif images.shape[3] == 1: images = tf.image.grayscale_to_rgb(images) visualization_keyword_args = { 'use_normalized_coordinates': use_normalized_coordinates, 'max_boxes_to_draw': max_boxes_to_draw, 'min_score_thresh': min_score_thresh, 'agnostic_mode': False, 'line_thickness': 4 } if true_image_shape is None: true_shapes = tf.constant(-1, shape=[images.shape.as_list()[0], 3]) else: true_shapes = true_image_shape if original_image_spatial_shape is None: original_shapes = tf.constant(-1, shape=[images.shape.as_list()[0], 2]) else: original_shapes = original_image_spatial_shape visualize_boxes_fn = create_visualization_fn( category_index, include_masks=instance_masks is not None, include_keypoints=keypoints is not None, include_track_ids=track_ids is not None, **visualization_keyword_args) elems = [true_shapes, original_shapes, images, boxes, classes, scores] if instance_masks is not None: elems.append(instance_masks) if keypoints is not None: elems.append(keypoints) if track_ids is not None: elems.append(track_ids) def draw_boxes(image_and_detections): """Draws boxes on image.""" true_shape = image_and_detections[0] original_shape = image_and_detections[1] if true_image_shape is not None: image = shape_utils.pad_or_clip_nd(image_and_detections[2], [true_shape[0], true_shape[1], 3]) if original_image_spatial_shape is not None: image_and_detections[2] = _resize_original_image(image, original_shape) image_with_boxes = tf.py_func(visualize_boxes_fn, image_and_detections[2:], tf.uint8) return image_with_boxes images = tf.map_fn(draw_boxes, elems, dtype=tf.uint8, back_prop=False) return images def draw_side_by_side_evaluation_image(eval_dict, category_index, max_boxes_to_draw=20, min_score_thresh=0.2, use_normalized_coordinates=True): """Creates a side-by-side image with detections and groundtruth. Bounding boxes (and instance masks, if available) are visualized on both subimages. Args: eval_dict: The evaluation dictionary returned by eval_util.result_dict_for_batched_example() or eval_util.result_dict_for_single_example(). category_index: A category index (dictionary) produced from a labelmap. max_boxes_to_draw: The maximum number of boxes to draw for detections. min_score_thresh: The minimum score threshold for showing detections. use_normalized_coordinates: Whether to assume boxes and kepoints are in normalized coordinates (as opposed to absolute coordiantes). Default is True. Returns: A list of [1, H, 2 * W, C] uint8 tensor. The subimage on the left corresponds to detections, while the subimage on the right corresponds to groundtruth. """ detection_fields = fields.DetectionResultFields() input_data_fields = fields.InputDataFields() images_with_detections_list = [] # Add the batch dimension if the eval_dict is for single example. if len(eval_dict[detection_fields.detection_classes].shape) == 1: for key in eval_dict: if key != input_data_fields.original_image: eval_dict[key] = tf.expand_dims(eval_dict[key], 0) for indx in range(eval_dict[input_data_fields.original_image].shape[0]): instance_masks = None if detection_fields.detection_masks in eval_dict: instance_masks = tf.cast( tf.expand_dims( eval_dict[detection_fields.detection_masks][indx], axis=0), tf.uint8) keypoints = None if detection_fields.detection_keypoints in eval_dict: keypoints = tf.expand_dims( eval_dict[detection_fields.detection_keypoints][indx], axis=0) groundtruth_instance_masks = None if input_data_fields.groundtruth_instance_masks in eval_dict: groundtruth_instance_masks = tf.cast( tf.expand_dims( eval_dict[input_data_fields.groundtruth_instance_masks][indx], axis=0), tf.uint8) images_with_detections = draw_bounding_boxes_on_image_tensors( tf.expand_dims( eval_dict[input_data_fields.original_image][indx], axis=0), tf.expand_dims( eval_dict[detection_fields.detection_boxes][indx], axis=0), tf.expand_dims( eval_dict[detection_fields.detection_classes][indx], axis=0), tf.expand_dims( eval_dict[detection_fields.detection_scores][indx], axis=0), category_index, original_image_spatial_shape=tf.expand_dims( eval_dict[input_data_fields.original_image_spatial_shape][indx], axis=0), true_image_shape=tf.expand_dims( eval_dict[input_data_fields.true_image_shape][indx], axis=0), instance_masks=instance_masks, keypoints=keypoints, max_boxes_to_draw=max_boxes_to_draw, min_score_thresh=min_score_thresh, use_normalized_coordinates=use_normalized_coordinates) images_with_groundtruth = draw_bounding_boxes_on_image_tensors( tf.expand_dims( eval_dict[input_data_fields.original_image][indx], axis=0), tf.expand_dims( eval_dict[input_data_fields.groundtruth_boxes][indx], axis=0), tf.expand_dims( eval_dict[input_data_fields.groundtruth_classes][indx], axis=0), tf.expand_dims( tf.ones_like( eval_dict[input_data_fields.groundtruth_classes][indx], dtype=tf.float32), axis=0), category_index, original_image_spatial_shape=tf.expand_dims( eval_dict[input_data_fields.original_image_spatial_shape][indx], axis=0), true_image_shape=tf.expand_dims( eval_dict[input_data_fields.true_image_shape][indx], axis=0), instance_masks=groundtruth_instance_masks, keypoints=None, max_boxes_to_draw=None, min_score_thresh=0.0, use_normalized_coordinates=use_normalized_coordinates) images_with_detections_list.append( tf.concat([images_with_detections, images_with_groundtruth], axis=2)) return images_with_detections_list def draw_keypoints_on_image_array(image, keypoints, color='red', radius=2, use_normalized_coordinates=True): """Draws keypoints on an image (numpy array). Args: image: a numpy array with shape [height, width, 3]. keypoints: a numpy array with shape [num_keypoints, 2]. color: color to draw the keypoints with. Default is red. radius: keypoint radius. Default value is 2. use_normalized_coordinates: if True (default), treat keypoint values as relative to the image. Otherwise treat them as absolute. """ image_pil = Image.fromarray(np.uint8(image)).convert('RGB') draw_keypoints_on_image(image_pil, keypoints, color, radius, use_normalized_coordinates) np.copyto(image, np.array(image_pil)) def draw_keypoints_on_image(image, keypoints, color='red', radius=2, use_normalized_coordinates=True): """Draws keypoints on an image. Args: image: a PIL.Image object. keypoints: a numpy array with shape [num_keypoints, 2]. color: color to draw the keypoints with. Default is red. radius: keypoint radius. Default value is 2. use_normalized_coordinates: if True (default), treat keypoint values as relative to the image. Otherwise treat them as absolute. """ draw = ImageDraw.Draw(image) im_width, im_height = image.size keypoints_x = [k[1] for k in keypoints] keypoints_y = [k[0] for k in keypoints] if use_normalized_coordinates: keypoints_x = tuple([im_width * x for x in keypoints_x]) keypoints_y = tuple([im_height * y for y in keypoints_y]) for keypoint_x, keypoint_y in zip(keypoints_x, keypoints_y): draw.ellipse([(keypoint_x - radius, keypoint_y - radius), (keypoint_x + radius, keypoint_y + radius)], outline=color, fill=color) def draw_mask_on_image_array(image, mask, color='red', alpha=0.4): """Draws mask on an image. Args: image: uint8 numpy array with shape (img_height, img_height, 3) mask: a uint8 numpy array of shape (img_height, img_height) with values between either 0 or 1. color: color to draw the keypoints with. Default is red. alpha: transparency value between 0 and 1. (default: 0.4) Raises: ValueError: On incorrect data type for image or masks. """ if image.dtype != np.uint8: raise ValueError('`image` not of type np.uint8') if mask.dtype != np.uint8: raise ValueError('`mask` not of type np.uint8') if np.any(np.logical_and(mask != 1, mask != 0)): raise ValueError('`mask` elements should be in [0, 1]') if image.shape[:2] != mask.shape: raise ValueError('The image has spatial dimensions %s but the mask has ' 'dimensions %s' % (image.shape[:2], mask.shape)) rgb = ImageColor.getrgb(color) pil_image = Image.fromarray(image) solid_color = np.expand_dims( np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3]) pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA') pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L') pil_image = Image.composite(pil_solid_color, pil_image, pil_mask) np.copyto(image, np.array(pil_image.convert('RGB'))) def visualize_boxes_and_labels_on_image_array( image, boxes, classes, scores, category_index, instance_masks=None, instance_boundaries=None, keypoints=None, track_ids=None, use_normalized_coordinates=False, max_boxes_to_draw=20, min_score_thresh=.5, agnostic_mode=False, line_thickness=4, groundtruth_box_visualization_color='black', skip_scores=False, skip_labels=False, skip_track_ids=False): """Overlay labeled boxes on an image with formatted scores and label names. This function groups boxes that correspond to the same location and creates a display string for each detection and overlays these on the image. Note that this function modifies the image in place, and returns that same image. Args: image: uint8 numpy array with shape (img_height, img_width, 3) boxes: a numpy array of shape [N, 4] classes: a numpy array of shape [N]. Note that class indices are 1-based, and match the keys in the label map. scores: a numpy array of shape [N] or None. If scores=None, then this function assumes that the boxes to be plotted are groundtruth boxes and plot all boxes as black with no classes or scores. category_index: a dict containing category dictionaries (each holding category index `id` and category name `name`) keyed by category indices. instance_masks: a numpy array of shape [N, image_height, image_width] with values ranging between 0 and 1, can be None. instance_boundaries: a numpy array of shape [N, image_height, image_width] with values ranging between 0 and 1, can be None. keypoints: a numpy array of shape [N, num_keypoints, 2], can be None track_ids: a numpy array of shape [N] with unique track ids. If provided, color-coding of boxes will be determined by these ids, and not the class indices. use_normalized_coordinates: whether boxes is to be interpreted as normalized coordinates or not. max_boxes_to_draw: maximum number of boxes to visualize. If None, draw all boxes. min_score_thresh: minimum score threshold for a box to be visualized agnostic_mode: boolean (default: False) controlling whether to evaluate in class-agnostic mode or not. This mode will display scores but ignore classes. line_thickness: integer (default: 4) controlling line width of the boxes. groundtruth_box_visualization_color: box color for visualizing groundtruth boxes skip_scores: whether to skip score when drawing a single detection skip_labels: whether to skip label when drawing a single detection skip_track_ids: whether to skip track id when drawing a single detection Returns: uint8 numpy array with shape (img_height, img_width, 3) with overlaid boxes. """ # Create a display string (and color) for every box location, group any boxes # that correspond to the same location. box_to_display_str_map = collections.defaultdict(list) box_to_color_map = collections.defaultdict(str) box_to_instance_masks_map = {} box_to_instance_boundaries_map = {} box_to_keypoints_map = collections.defaultdict(list) box_to_track_ids_map = {} if not max_boxes_to_draw: max_boxes_to_draw = boxes.shape[0] for i in range(min(max_boxes_to_draw, boxes.shape[0])): if scores is None or scores[i] > min_score_thresh: box = tuple(boxes[i].tolist()) if instance_masks is not None: box_to_instance_masks_map[box] = instance_masks[i] if instance_boundaries is not None: box_to_instance_boundaries_map[box] = instance_boundaries[i] if keypoints is not None: box_to_keypoints_map[box].extend(keypoints[i]) if track_ids is not None: box_to_track_ids_map[box] = track_ids[i] if scores is None: box_to_color_map[box] = groundtruth_box_visualization_color else: display_str = '' if not skip_labels: if not agnostic_mode: if classes[i] in category_index.keys(): class_name = category_index[classes[i]]['name'] else: class_name = 'N/A' display_str = str(class_name) if not skip_scores: if not display_str: display_str = '{}%'.format(int(100*scores[i])) else: display_str = '{}: {}%'.format(display_str, int(100*scores[i])) if not skip_track_ids and track_ids is not None: if not display_str: display_str = 'ID {}'.format(track_ids[i]) else: display_str = '{}: ID {}'.format(display_str, track_ids[i]) box_to_display_str_map[box].append(display_str) if agnostic_mode: box_to_color_map[box] = 'DarkOrange' elif track_ids is not None: prime_multipler = _get_multiplier_for_color_randomness() box_to_color_map[box] = STANDARD_COLORS[ (prime_multipler * track_ids[i]) % len(STANDARD_COLORS)] else: box_to_color_map[box] = STANDARD_COLORS[ classes[i] % len(STANDARD_COLORS)] # Draw all boxes onto image. for box, color in box_to_color_map.items(): ymin, xmin, ymax, xmax = box if instance_masks is not None: draw_mask_on_image_array( image, box_to_instance_masks_map[box], color=color ) if instance_boundaries is not None: draw_mask_on_image_array( image, box_to_instance_boundaries_map[box], color='red', alpha=1.0 ) draw_bounding_box_on_image_array( image, ymin, xmin, ymax, xmax, color=color, thickness=line_thickness, display_str_list=box_to_display_str_map[box], use_normalized_coordinates=use_normalized_coordinates) if keypoints is not None: draw_keypoints_on_image_array( image, box_to_keypoints_map[box], color=color, radius=line_thickness / 2, use_normalized_coordinates=use_normalized_coordinates) return image def add_cdf_image_summary(values, name): """Adds a tf.summary.image for a CDF plot of the values. Normalizes `values` such that they sum to 1, plots the cumulative distribution function and creates a tf image summary. Args: values: a 1-D float32 tensor containing the values. name: name for the image summary. """ def cdf_plot(values): """Numpy function to plot CDF.""" normalized_values = values / np.sum(values) sorted_values = np.sort(normalized_values) cumulative_values = np.cumsum(sorted_values) fraction_of_examples = (np.arange(cumulative_values.size, dtype=np.float32) / cumulative_values.size) fig = plt.figure(frameon=False) ax = fig.add_subplot('111') ax.plot(fraction_of_examples, cumulative_values) ax.set_ylabel('cumulative normalized values') ax.set_xlabel('fraction of examples') fig.canvas.draw() width, height = fig.get_size_inches() * fig.get_dpi() image = np.fromstring(fig.canvas.tostring_rgb(), dtype='uint8').reshape( 1, int(height), int(width), 3) return image cdf_plot = tf.py_func(cdf_plot, [values], tf.uint8) tf.summary.image(name, cdf_plot) def add_hist_image_summary(values, bins, name): """Adds a tf.summary.image for a histogram plot of the values. Plots the histogram of values and creates a tf image summary. Args: values: a 1-D float32 tensor containing the values. bins: bin edges which will be directly passed to np.histogram. name: name for the image summary. """ def hist_plot(values, bins): """Numpy function to plot hist.""" fig = plt.figure(frameon=False) ax = fig.add_subplot('111') y, x = np.histogram(values, bins=bins) ax.plot(x[:-1], y) ax.set_ylabel('count') ax.set_xlabel('value') fig.canvas.draw() width, height = fig.get_size_inches() * fig.get_dpi() image = np.fromstring( fig.canvas.tostring_rgb(), dtype='uint8').reshape( 1, int(height), int(width), 3) return image hist_plot = tf.py_func(hist_plot, [values, bins], tf.uint8) tf.summary.image(name, hist_plot) class EvalMetricOpsVisualization(object): """Abstract base class responsible for visualizations during evaluation. Currently, summary images are not run during evaluation. One way to produce evaluation images in Tensorboard is to provide tf.summary.image strings as `value_ops` in tf.estimator.EstimatorSpec's `eval_metric_ops`. This class is responsible for accruing images (with overlaid detections and groundtruth) and returning a dictionary that can be passed to `eval_metric_ops`. """ __metaclass__ = abc.ABCMeta def __init__(self, category_index, max_examples_to_draw=5, max_boxes_to_draw=20, min_score_thresh=0.2, use_normalized_coordinates=True, summary_name_prefix='evaluation_image'): """Creates an EvalMetricOpsVisualization. Args: category_index: A category index (dictionary) produced from a labelmap. max_examples_to_draw: The maximum number of example summaries to produce. max_boxes_to_draw: The maximum number of boxes to draw for detections. min_score_thresh: The minimum score threshold for showing detections. use_normalized_coordinates: Whether to assume boxes and kepoints are in normalized coordinates (as opposed to absolute coordiantes). Default is True. summary_name_prefix: A string prefix for each image summary. """ self._category_index = category_index self._max_examples_to_draw = max_examples_to_draw self._max_boxes_to_draw = max_boxes_to_draw self._min_score_thresh = min_score_thresh self._use_normalized_coordinates = use_normalized_coordinates self._summary_name_prefix = summary_name_prefix self._images = [] def clear(self): self._images = [] def add_images(self, images): """Store a list of images, each with shape [1, H, W, C].""" if len(self._images) >= self._max_examples_to_draw: return # Store images and clip list if necessary. self._images.extend(images) if len(self._images) > self._max_examples_to_draw: self._images[self._max_examples_to_draw:] = [] def get_estimator_eval_metric_ops(self, eval_dict): """Returns metric ops for use in tf.estimator.EstimatorSpec. Args: eval_dict: A dictionary that holds an image, groundtruth, and detections for a batched example. Note that, we use only the first example for visualization. See eval_util.result_dict_for_batched_example() for a convenient method for constructing such a dictionary. The dictionary contains fields.InputDataFields.original_image: [batch_size, H, W, 3] image. fields.InputDataFields.original_image_spatial_shape: [batch_size, 2] tensor containing the size of the original image. fields.InputDataFields.true_image_shape: [batch_size, 3] tensor containing the spatial size of the upadded original image. fields.InputDataFields.groundtruth_boxes - [batch_size, num_boxes, 4] float32 tensor with groundtruth boxes in range [0.0, 1.0]. fields.InputDataFields.groundtruth_classes - [batch_size, num_boxes] int64 tensor with 1-indexed groundtruth classes. fields.InputDataFields.groundtruth_instance_masks - (optional) [batch_size, num_boxes, H, W] int64 tensor with instance masks. fields.DetectionResultFields.detection_boxes - [batch_size, max_num_boxes, 4] float32 tensor with detection boxes in range [0.0, 1.0]. fields.DetectionResultFields.detection_classes - [batch_size, max_num_boxes] int64 tensor with 1-indexed detection classes. fields.DetectionResultFields.detection_scores - [batch_size, max_num_boxes] float32 tensor with detection scores. fields.DetectionResultFields.detection_masks - (optional) [batch_size, max_num_boxes, H, W] float32 tensor of binarized masks. fields.DetectionResultFields.detection_keypoints - (optional) [batch_size, max_num_boxes, num_keypoints, 2] float32 tensor with keypoints. Returns: A dictionary of image summary names to tuple of (value_op, update_op). The `update_op` is the same for all items in the dictionary, and is responsible for saving a single side-by-side image with detections and groundtruth. Each `value_op` holds the tf.summary.image string for a given image. """ if self._max_examples_to_draw == 0: return {} images = self.images_from_evaluation_dict(eval_dict) def get_images(): """Returns a list of images, padded to self._max_images_to_draw.""" images = self._images while len(images) < self._max_examples_to_draw: images.append(np.array(0, dtype=np.uint8)) self.clear() return images def image_summary_or_default_string(summary_name, image): """Returns image summaries for non-padded elements.""" return tf.cond( tf.equal(tf.size(tf.shape(image)), 4), lambda: tf.summary.image(summary_name, image), lambda: tf.constant('')) if tf.executing_eagerly(): update_op = self.add_images([[images[0]]]) image_tensors = get_images() else: update_op = tf.py_func(self.add_images, [[images[0]]], []) image_tensors = tf.py_func( get_images, [], [tf.uint8] * self._max_examples_to_draw) eval_metric_ops = {} for i, image in enumerate(image_tensors): summary_name = self._summary_name_prefix + '/' + str(i) value_op = image_summary_or_default_string(summary_name, image) eval_metric_ops[summary_name] = (value_op, update_op) return eval_metric_ops @abc.abstractmethod def images_from_evaluation_dict(self, eval_dict): """Converts evaluation dictionary into a list of image tensors. To be overridden by implementations. Args: eval_dict: A dictionary with all the necessary information for producing visualizations. Returns: A list of [1, H, W, C] uint8 tensors. """ raise NotImplementedError class VisualizeSingleFrameDetections(EvalMetricOpsVisualization): """Class responsible for single-frame object detection visualizations.""" def __init__(self, category_index, max_examples_to_draw=5, max_boxes_to_draw=20, min_score_thresh=0.2, use_normalized_coordinates=True, summary_name_prefix='Detections_Left_Groundtruth_Right'): super(VisualizeSingleFrameDetections, self).__init__( category_index=category_index, max_examples_to_draw=max_examples_to_draw, max_boxes_to_draw=max_boxes_to_draw, min_score_thresh=min_score_thresh, use_normalized_coordinates=use_normalized_coordinates, summary_name_prefix=summary_name_prefix) def images_from_evaluation_dict(self, eval_dict): return draw_side_by_side_evaluation_image( eval_dict, self._category_index, self._max_boxes_to_draw, self._min_score_thresh, self._use_normalized_coordinates)