import cv2 import time import numpy as np MODE = "MPI" if MODE is "COCO": protoFile = "pose/coco/pose_deploy_linevec.prototxt" weightsFile = "pose/coco/pose_iter_440000.caffemodel" nPoints = 18 POSE_PAIRS = [ [1,0],[1,2],[1,5],[2,3],[3,4],[5,6],[6,7],[1,8],[8,9],[9,10],[1,11],[11,12],[12,13],[0,14],[0,15],[14,16],[15,17]] elif MODE is "MPI" : protoFile = "pose/mpi/pose_deploy_linevec_faster_4_stages.prototxt" weightsFile = "pose/mpi/pose_iter_160000.caffemodel" nPoints = 15 POSE_PAIRS = [[0,1], [1,2], [2,3], [3,4], [1,5], [5,6], [6,7], [1,14], [14,8], [8,9], [9,10], [14,11], [11,12], [12,13] ] frame = cv2.imread("single.jpeg") frameCopy = np.copy(frame) frameWidth = frame.shape[1] frameHeight = frame.shape[0] threshold = 0.2 net = cv2.dnn.readNetFromCaffe(protoFile, weightsFile) t = time.time() # input image dimensions for the network inWidth = 368 inHeight = 368 inpBlob = cv2.dnn.blobFromImage(frame, 1.0 / 255, (inWidth, inHeight), (0, 0, 0), swapRB=False, crop=False) net.setInput(inpBlob) output = net.forward() print("time taken by network : {:.3f}".format(time.time() - t)) H = output.shape[2] W = output.shape[3] # Empty list to store the detected keypoints points = [] for i in range(nPoints): # confidence map of corresponding body's part. probMap = output[0, i, :, :] # Find global maxima of the probMap. minVal, prob, minLoc, point = cv2.minMaxLoc(probMap) # Scale the point to fit on the original image x = (frameWidth * point[0]) / W y = (frameHeight * point[1]) / H if prob > threshold : cv2.circle(frameCopy, (int(x), int(y)), 8, (0, 255, 255), thickness=-1, lineType=cv2.FILLED) cv2.putText(frameCopy, "{}".format(i), (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, lineType=cv2.LINE_AA) # Add the point to the list if the probability is greater than the threshold points.append((int(x), int(y))) else : points.append(None) # Draw Skeleton for pair in POSE_PAIRS: partA = pair[0] partB = pair[1] if points[partA] and points[partB]: cv2.line(frame, points[partA], points[partB], (0, 255, 255), 2) cv2.circle(frame, points[partA], 8, (0, 0, 255), thickness=-1, lineType=cv2.FILLED) cv2.imshow('Output-Keypoints', cv2.resize(frameCopy,(900,900))) cv2.imshow('Output-Skeleton', cv2.resize(frame,(600,900))) cv2.imwrite('Output-Keypoints.jpg', frameCopy) cv2.imwrite('Output-Skeleton.jpg', frame) print("Total time taken : {:.3f}".format(time.time() - t)) cv2.waitKey(0)